
PyCPR – A Python-based Implementation of the Conjugate Peak
Refinement (CPR) Algorithm for Finding Transition State

Structures

Florian J. Gisdon,∗ Martin Culka,∗ G. Matthias Ullmann
∗ both authors contributed equally

Computational Biochemistry, University of Bayreuth, Universitätsstr. 30, NW I, 95447 Bayreuth,
Germany

Correspondence should be addressed to: Matthias.Ullmann@uni-bayreuth.de

——————————————————————
Manual

——————————————————————

If you use this software for a published work, please cite:

Florian J. Gisdon, Martin Culka, G. Matthias Ullmann (2016): PyCPR – A Python-based
Implementation of the Conjugate Peak Refinement (CPR) Algorithm for Finding Transi-
tion State Structures.
J. Mol. Model. 22: 242, 2016
DOI: 10.1007/s00894-016-3116-8

These files are distrubted under the CeCILL license (very similar to GNU GPL license).

1

1. Incorporating PyCPR into pDynamo
The PyCPR1 implementation of the Conjugate Peak Refinement (CPR) algorithm2 consists of three
Python modules. The modules need to be copied into the appropriate directories of the working
pDynamo3 distribution and the corresponding __init__.py of those folders have to be adapted.
Here is the list of PyCPR modules and their destinations in the pDynamo tree:

Module file Destination directory
ConjugatePeakRefinement.py pMoleculeScripts
CPRSaddlePointRefinement.py pCore
MoreThuenteLineSearchWithMax.py pCore

The installation can be done automatically by the install.csh script, provided that the pDynamo
environmental variables are correctly set.

Alternatively, the installation can be done manually. First, please make sure that you have a
working copy of pDynamo installed on your system. Copy the files from the directory modules to
appropriate pDynamo directories:

• ConjugatePeakRefinement.py to
$PDYNAMO_PMOLECULESCRIPTS/pMoleculeScripts

• CPRSaddlePointRefinement.py and MoreThuenteLineSearchWithMax.py to
$PDYNAMO_PCORE/pCore

In this case, the __init__.py files in the corresponding directories have to be modified accord-
ingly, i.e. the following lines need to be added:

• to $PDYNAMO_PMOLECULESCRIPTS/pMoleculeScripts/__init__.py

from ConjugatePeakRefinement import ConjugatePeakRefinementOptimizePath

• to $PDYNAMO_PMOLECULESCRIPTS/pMoleculeScripts/__init__.py

from CPRSaddlePointRefinement import CPRSaddlePointRefinement

from MoreThuenteLineSearchWithMax import MoreThuenteLineSearchWithMax

After a successful installation, the example script that finds a reaction path for the conformational
change in butane molecule can be run. The script butane-CPR.py and the input structures can be
found in the directory example-butane.

python butane-CPR.py > butane-CPR.out

2

2. Running Conjugate Peak Refinement
Once a chemical system and an initial trajectory (at least 2 path points) is defined within the

pDynamo framework, the PyCPR path search can be run calling following function:

ConjugatePeakRefinementOptimizePath (system, imageTrajectory, \

**keywordArguments)

where

• system is a pDynamo data structure containing the definition of the system

• imageTrajectory is a pDynamo data structure containing the initial reaction path

• **keywordArguments is a list of optional keywords for PyCPR which are explained in the
following

2.1. Getting started
Alongside with the PyCPR modules, we provide a simple example script for calculation of the

conformational change from anti to gauche in a butane molecule. This script can be used as a basis
for setting up own calculations using the CPR algorithm. In this example, a pure quantum-mechanical
(QM) system in gas phase is defined using the semiempirical RM1 method as implemented in pDy-
namo.

#!/usr/bin/python

from pBabel import MOLFile_ToSystem, XYZFiles_ToSystemGeometryTrajectory, \

SystemGeometryTrajectory, \

XYZFiles_FromSystemGeometryTrajectory

from pMolecule import QCModelMNDO, ADIISSCFConverger, DIISSCFConverger, \

ElectronicState

from pMoleculeScripts import ConjugatePeakRefinementOptimizePath

#---

Define the molecule and its energy model

#---

converger=ADIISSCFConverger(densityTolerance=10e-13)

system = MOLFile_ToSystem("./input/butane.mol")

system.electronicState = ElectronicState(charge = 0, multiplicity = 1)

qc_model = QCModelMNDO("rm1", converger=converger)

system.DefineQCModel (qc_model)

system.Summary ()

#---

Generate initial trajectory (at least 2 structures!)

#---

3

initial_path = (

"./input/butane-anti-opt.xyz",

"./input/butane-gauche-opt.xyz",

)

traj_path = "cpr_traj" # directory to save the path structures to

XYZFiles_ToSystemGeometryTrajectory(initial_path, traj_path, system)

trajectory = SystemGeometryTrajectory(traj_path, system, mode = "a+")

#--

Run CPR on the *system* starting from the initial *trajectory*
#--

ConjugatePeakRefinementOptimizePath (system, trajectory, \

rmsGradientTolerance = 0.001, \

breakIfTauReached = False, \

interpolationIncreasement = 0, \

finalUnrefinableRefinement = False)

#--

Convert the final path to .xyz formate

#--

XYZFiles_FromSystemGeometryTrajectory (traj_path, traj_path, system)

Within the pDynamo framework, it is also possible to set up different kinds of calculations, e.g.
molecular-mechanical (MM) or hybrid QM/MM. This has been already described in following pDy-
namo documentation sources:

• book by M. J. Field, A Practical Introduction to the Simulation of Molecular Systems published
by Cambridge University Press in 2007

• pDynamo wiki webpage
http://sites.google.com/site/pdynamomodeling/getting-started

2.2. Adjustable algorithm parameters
The CPR calculation can be adjusted by changing the default algorithm parameters. Please note

that although many parameters of the CPR algorithm are adjustable, the default values are usually
chosen reasonably and a significant modification may cause that the resulting path has little meaning.
The user is advised to carefully read the paper describing PyCPR1 in order to understand the theory
behind the parameters before changing the default values. The adjustable parameters can be catego-
rized according to the three major domains of the algorithm (as described in Ref. 1). A fourth group
gathers parameters that are related to the overall course of the CPR algorithm.

4

http://sites.google.com/site/pdynamomodeling/getting-started

Highest Point Search. In this part, the CPR algorithm searches for the point (structure) with the
overall highest energy along the reaction path to be later optimized. The path from the reactant to
the product state is approximated by piecewise linear interpolations between the path points. The
extend of this discretization is dependent on the length of the path segment. The minimal number of
discretization steps can be adjusted by setting the stepsPerSegment parameter.

The adjustable parameter for the Highest Point Search domain of the CPR algorithm is:

Parameter Default Short description
stepsPerSegment 3 Determines the minimal number of discretization steps

Saddle Point Refinement. The highest point of the path is passed to the Saddle Point Refinement
procedure each CPR cycle. The full theory description can be found in Ref.1. Here only the necessary
parts are briefly repeated.

The first step of the Saddle Point Refinement is a line maximization of the initial point x0 along the
initial search direction s0, which is a tangential direction to the path at this point. Point x1 representing
a local maximum along s0 is thus obtained. As described in the theory section of Ref.1, the difference
between the gradient at the point x0 (g0) and x1 (g1) is used to construct a set of conjugate minimiza-
tion directions si. This way of constructing the directions is used if the parameter finiteDifference is
set to False. However, if the path is not yet well sampled, the difference between x0 and x1 is often
significant and for the conjugacy term it is more advisable to use a finite difference approximation.
Thus when the parameter finiteDifference is set to True, a step of the length specified in finiteDiffer-
enceStep is taken from x1 along s0 and the gradient of this point is taken as g0 for the construction of
conjugate directions si. Another parameter for the construction of the set of conjugate optimization
directions (si) is the scaling factor beta-type. In our implementation, three different beta-types can be
selected, please refer to Ref.1 for details.

If no nearby maximum is found along s0, and x0 was an existing path point, the point gets deleted
from the path. The criterion for being nearby is evaluated based on RMSD and can be adjusted by
changing the parameter rmsdToleranceMaximum. If a nearby maximum is found, the resulting point
x1 is further optimized by a series of conjugate line minimizations along gradually constructed di-
rections si. The initial step of the line search can be adjusted by the parameter lineSearchInitialStep
(affects also the initial line maximization). During the optimization process, occasionally a low gra-
dient region is reached where the RMS gradient is below the rmsGradientTolerance threshold. Once
the gradient stays low for M steps, a saddle point is found. By default, M is set to

√
N where N

is the number of atoms in the system. Alternatively, M can be directly specified by the parameter
numberOfSuccessiveLowGradients. It might seem that the default number of the rmsGradientToler-
ance threshold is too high and the numberOfSuccessiveLowGradients is too big. However, to locate
a saddle point, it is important to check more search directions within the low gradient region. If the

5

rmsGradientTolerance would be too low, one could run into a numerical precision problem, since the
gradient gets anyway significantly below this threshold if the numberOfSuccessiveLowGradients is
big enough.

During the conjugate optimization process, it can happen that the next search direction is no
longer conjugate to s0. After the parameter τ (see Ref.1 for details) reaches a certain tolerance t, the
optimization may be interrupted. Since it is advisable to allow bigger flexibility when adding a point
from the linear interpolation compared to when refining an existing path point, two thresholds are
introduced – tauTolAdd and tauTolRefine, respectively. When the path is not well refined yet, it might
be beneficial to allow the algorithm to find new possible minima by breaking the conjugacy criterion
during the optimization. This behavior can be allowed by setting the parameter breakIfTauReached
to False. Sometimes it happens, that the search directions do not lead to a low gradient region, yet the
directions remain conjugate or breakIfTauReached is False. By default, the CPR algorithm optimizes
along all theoretically reasonable 3N − 1 conjugate directions. The user can reduce this number by
setting the parameter maximalMinimizationSteps, yet this number should be set reasonably big (at
least two times the numberOfSuccessiveLowGradients in order not to break in the low gradient region
before reaching the saddle point criterion).

The adjustable parameters for the Saddle Point Refinement domain of the CPR algorithm are:

Parameter Default Short description
finiteDifference True use finite difference for x0 reevaluation
finiteDifferenceStep 1.0e-3 length of the finite difference step
betaType PRP specify betaType

FR: Fletcher and Reeves
PRP: Polak, Ribière and Polyak
HS: Hestenes and Stiefel

rmsdToleranceMaximum 1.5 threshold for the nearby maximum (in Å)
lineSearchInitialStep 0.1 length of the first line search step (in Å)
rmsGradientTolerance 0.1 threshold for entering the low gradient region

when approaching the saddle point (in kJ/(mol Å)
numberOfSuccessiveLowGradients None number of successive low gradients during the op-

timization in order to classify the optimized struc-
ture as a saddle point; None means that

√
N taken

tauTolAdd 0.15 τ exit threshold when adding a new point to the
path

tauTolRefine 0.05 τ exit threshold when refining an existing path
point

6

breakIfTauReached True if True, this CPR cycle stops if τ threshold is
reached; if False the cycle continues, but the re-
sulting point is not marked as saddle point

maximalMinimizationSteps None Max. number of optimization steps within a CPR-
cycle; None means that the theoretical maximum
(3N − 1) is taken

Futile Loop Prevention. During the CPR path optimization, a futile adding and deleting of the path
points might occur. In Ref.1, we describe a strategy to prevent such infinite loops within the Futile
Loop Prevention section.

A futile loop occurs, if a (x0, s0) couple, that has already been treated, is encountered again. In this
case, the optimization strategy is modified. The similarity is determined by RMSD and the threshold
can be adjusted by the parameters rmsdLoopPreventionX0 and rmsdLoopPreventionS0. The first pre-
vention strategy is to rediscretize the segment with a bigger number of steps and thus hopefully find
better x0 to be optimized. The extend of this increase can be adjusted by the parameter interpolation-
Increasement. Doubling of the τ threshold t is another strategy and this can be switched on or off by
the parameter increaseTau.

The adjustable parameters for the Futile Loop Prevention domain of the CPR algorithm are:

Parameter Default Short description
rmsdLoopPreventionX0 1.0e-6 RMSD tolerance of x0 for futile loop detection in

Å
rmsdLoopPreventionS0 1.0e-6 RMSD tolerance of s0 for futile loop detection in

kJ/(mol Å)
interpolationIncreasement 3 How much to increase the linear discretization of a

path segment during the futile loop prevention
increaseTau False if True, the τ -threshold for exiting the Saddle

Point Optimization is doubled as strategy for the
futile loop prevention

General algorithm parameters. In addition to the specific settings, several general parameters may
be adjusted:

• It is possible to change the maximal number of the CPR cycles by changing the option max-
CPRrun.

• In the end of the CPR procedure, it is possible to revisit the points marked as unrefinable
(finalUnrefinableRefinement).

7

• When there is no good initial guess of the path, it might be advisable to run first few cycles
using orthogonal directions instead of conjugate (initialOrthogonalRuns).

• When an external program (e.g. ORCA) is used for the QM part and an electron transfer is
happening during the studied reaction, it might be advisable to clear the scratch directory after
every CPR cycle by setting the scratchDirectory to the path of this directory in order to avoid
restarting from the previous electronic state.

• A restart file containing information of the highest point in every current path segment as well
as the saddle, stationary and unrefinable point flags is written out every CPR cycle. This file
is by default called cpr.restart and this name can be changed by the parameter outpu-
tRestartFile. When restarting after a previous CPR run, the restart file corresponding to the
structures from the previous run may be loaded in (path specified by inputRestartFile).

The general adjustable CPR parameters are:

Parameter Default Short description
maxCPRrun 1000 Max. number of CPR-cycles
finalUnrefinableRefinement False If True, points marked as unrefinable are

treated again once before exit
initialOrthogonalRuns 0 Number of initial CPR-cycles optimizing using

orthogonal directions instead of conjugate.
scratchDirectory None If specified the folder is cleaned up after every

cycle.
outputRestartFile cpr.restart Path for a restart file to be written
inputRestartFile None Path for a restart file to be read

2.3. General recommendations
It is possible to start the reaction mechanism search by PyCPR providing only an initial and a final
structure as an input. If you do so, please keep in mind that CPR starts from a linear interpolation
between the provided initial path points and if the structures are very different, the optimization might
fail in an early stage e.g. due to electronic structure convergence difficulties. Even if this does not hap-
pen, one has to keep in mind that although the resulting path contains low gradient points, the search
might be biased by the initial linear guess and the resulting mechanism is not necessarily the one with
minimal barrier. In case of complex reactions it is thus more advisable to provide an initial guess for
the path. If some stable intermediates are already known e.g. from a potential energy surface scan,
they can help to guide the algorithm to find the saddle points between them. Alternatively, CPR can
be combined with another reaction path search method, e.g. the growing string and/or nudged elastic

8

band methods within pDynamo. The trajectory (as the second CPR parameter, imageTrajectory) can
be passed directly between the methods. For more detailed discussion about the recommended Py-
CPR usage strategy please refer to Ref.1.

2.4. Treating problematic cases
Some recommendations are already given in Ref.1. Here, we provide a few more practical hints.
During the reaction path search with PyCPR, difficult regions can occur on the energy landscape,

where the algorithm may fail to proceed. This behavior could occur in a rather flat region, where
still a slightly higher maximum is found within the segment after refinement of a previously found
maximum. Such a behavior can lead to accumulation of very similar points. If the energetic difference
of these points is vanishing, it is advisable to pick a representative point of that region, delete almost
equal ones and mark the neighboring segments as resolved using the restart file. Then the algorithm
can concentrate on other regions of the path and one can treat the accumulation region separately.
If points marked as unrefinable still exist at the end of the CPR cycles, especially if such a point
is the highest along the path, one should treat them individually. For that, it is worth to generate
further images in this problematic segment to get a better sampling and refine them. This approach
creates new starting points for the optimization and a changed surrounding, which mostly improves
the refinement of these regions. In general, the transition state search is an interactive progress and
the result has to be analyzed critically.

References

[1] Gisdon, F. J.; Culka, M.; Ullmann, G. M. J. Mol. Model., 2016, 22, 242.

[2] Fischer, S.; Karplus, M. Chemical Physics Letters, 1992, 194, 252–261.

[3] Field, M. J. J. Chem. Theory Comput., 2008, 4, 1151–1161.

9

