
Grundpraktikum Bioinformatik

SS 2016

November 26, 2018

AG Ullmann

• Jeder Praktikumstag ist ein Chapter.

• Vorsicht!!! Der Inhalt dieser Praktiumsanleitung kann sich bis zu
einem Tag vor dem Praktikumstermin ändern! Bitte kapitelweise aus-
drucken.

• l 6=1, d.h. ein kleines L ist keine Eins

• O 6=0, d.h. ein großes o ist keine Null

• [CTRL]=[STRG]

• ‘ 6=’, d.h. es gibt verschiedene Anführungszeichen

Bitte beachten Sie

Wenn Sie den Raum verlassen:
Zur Mittagspause sollten sie den Bildschirmschoner starten. Dafür drücken Sie die rechte

Maustaste auf dem Desktop-Hintergrund und wählen ”Lock Screen”. Nach der Mittagspause
müssen Sie dann Ihr Passwort eingeben, um weiter arbeiten zu können. Dafür kann in der
Zwischenzeit niemand Ihren Rechner verwenden.

Nach Abschluss des Praktikums loggen Sie sich bitte aus. Aber schalten Sie die Rechner
nicht aus, sie werden oft zum Rechnen über Nacht verwendet.

Wie Sie dieses Praktikum erfolgreich abschließen:

• Der Stoff der Vorlesung ist Voraussetzung für das Arbeiten im Praktikum. Gehen Sie also
zur Vorlesung oder sehen Sie sich also zumindest die Folien an!

• Arbeiten Sie im Verzeichnis ”Praktikum/Tag X” (X=1,2,3,4,5). Das Erstellen dieser
Verzeichnisse wird eine der Aufgaben des ersten Praktikumstages sein, also keine Panik
wenn nicht gleich klar ist, was Sie hier tun sollen.

• Das Praktikum hat z. T. den Charakter einer Übung. Deshalb ist das Protokoll in eine
etwas unüblichen Form abzugeben. Am Ende jeder Praktikumsanleitung werden Fragen
gestellt. Beantworten Sie diese Fragen in einem kurzen Protokoll (Ein Protokoll pro Prak-
tikumstag). Sie können dieses Protokoll z. B. mit LibreOffice (Befehl ”libreoffice”)
im CIP-Pool schreiben.

• Arbeiten Sie in Zweier-Gruppen und geben Sie ein Protokoll pro Gruppe ab. Schreiben
Sie beide Namen und Benutzerkennungen auf das Protokoll.

• Wann Sie die Mittagspause machen, ist Ihnen freigestellt.

Protokoll – Abgabe und Korrektur

• Geben Sie die ausgedruckten Protokolle spätestens eine Woche nach dem Praktikumstag
ab (z.B. am Dienstag in der Vorlesung oder am Mittwoch im Praktikumsraum).

• Diese Protokolle werden in der folgenden Woche korrigiert. Für jedes richtige Pro-
tokoll gibt es einen Punkt. Sollte ein Protokoll Fehler enthalten, haben Sie einmal die
Möglichkeit, das Protokoll zu verbessern. Geben Sie die Verbessung zum Protokoll
zusammen mit dem vorherigen fehlerhaften Protokoll eine Woche nach Rückgabe
ab.

• Falls Sie:

– Protokolle nicht innerhalb einer Woche abgeben,

– das korrigierte Protokoll nicht innerhalb einer Woche abgeben, bzw.

– das korrigierte Protokoll fehlerhaft ist,

2

haben Sie die Möglichkeit, Ihr Wissen zu diesem Thema in einem Kolloquium bei Prof.
Ullmann unter Beweis zu stellen. Falls Sie das Kolloquium nicht bestehen, können Sie
es einmal wiederholen. Falls Sie es auch ein zweites Mal nicht bestehen, können Sie das
Praktikum im darauffolgenden Jahr wiederholen.

• Um das Praktikum zu bestehen und zur Prüfung zugelassen zu werden, müssen alle
Punkte erreicht werden.

• Sie können auf dieser Seite 1 nachprüfen, ob Sie auf ein Protokoll einen Punkt bekommen
haben.

• Die Protokolle werden zu Beginn des darauf folgenden Praktikumstages besprochen.

Wie soll das Protokoll aussehen?

• Schreiben Sie das Protokoll auf Deutsch.

• Schreiben Sie das Protokoll z. B. mit LibreOffice (Kommando libreoffice). Dieses Pro-
gramm ist MS Office ähnlich.

• Kopieren Sie keine Protokolle oder Abbildungen von Kommilitonen. Das kann ersthafte
rechtliche Konsequenzen haben (Plagiat!).

• Beantworten Sie die Fragen/Aufgaben (Tasks) in kurzen aussagekräftigen Sätzen. Geben
Sie die Nummern der Fragen/Aufgaben an! Kopieren Sie die Fragen mit in das Protokoll!

• Schreiben Sie aussagekräftige Legenden zu Abbildungen und Tabellen. Vergessen Sie bei
Diagrammen die Achsenbeschriftung und ggf. die Einheiten nicht!

1http://www.bisb.uni-bayreuth.de/People/ullmann/praktikum/points.html

3

http://www.bisb.uni-bayreuth.de/People/ullmann/praktikum/points.html

4

Chapter 1

UNIX Tutorial for Beginners

This part is a short introduction to Linux (and other Unix like systems). 1

1.1 Typographical conventions
In what follows, we shall use the following typographical conventions:

• Characters written in typewriter font are commands to be typed into the computer
as they stand.

• Characters written in italic font indicate non-specific file or directory names.

• Words inserted within square brackets [Ctrl] indicate keys to be pressed.

• The string “prompt:” is called the prompt. The look of this string is dependent on the
system you are working with or actually on your (default) settings. For our system that
prompt contains your current working directory and a “>” sign (like bpbi0815/unixstuff>).
Sometimes it is just “%” or “>”. Whatever you prompt might be, don’t type the prompt
with your commands!

So, for example,

prompt: ls anydirectory [Enter]

means “at the UNIX prompt “prompt:”, type “ls” followed by the name of some directory,
then press the key marked Enter”.

Don’t forget to press the [Enter] key: commands are not sent to the computer until this is
done.

Note:
UNIX is case-sensitve, so LS is not the same as ls.
The same applies to filenames, so myfile.txt, MyFile.txt and MYFILE.TXT are three seperate
files.

1originally taken from http://www.ee.surrey.ac.uk/Teaching/Unix/ but largely extended and modified

5

1.2 UNIX Introduction
This session concerns UNIX, which is a common operating system. By operating system, we
mean the suite of programs which make the computer work. UNIX is used by workstations and
servers within the university.

On X terminals and the workstations, X Windows provide a graphical interface between the
user and UNIX. However, knowledge of UNIX is required for operations which aren’t covered
by a graphical program, or for when there is no X windows system, for example, in a ssh
session.

1.2.1 The UNIX operating system

The UNIX operating system is made up of three parts; the kernel, the shell and the programs.

The kernel

The kernel of UNIX is the hub of the operating system: it allocates time and memory to pro-
grams and handles the filestore and communications in response to system calls.

As an illustration of the way that the shell and the kernel work together, suppose a user
types rm myfile (which has the effect of removing the file myfile). The shell searches the
filestore for the file containing the program rm, and then requests the kernel, through system
calls, to execute the program rm on myfile. When the process rm myfile has finished
running, the shell then returns the UNIX prompt prompt: to the user, indicating that it is
waiting for further commands.

The shell

The shell acts as an interface between the user and the kernel. When a user logs in, the login
program checks the username and password, and then starts another program called the shell.
The shell is a command line interpreter (CLI). It interprets the commands the user types in
and arranges for them to be carried out. The commands are themselves programs: when they
terminate, the shell gives the user another prompt.

The user can customize his/her own shell, and users can use different shells on the same
machine. An comfortable shell is the tcsh shell which has certain features to help the user
inputting commands:

• Filename Tab-Completion: By typing part of the name of a command, filename or
directory and pressing the [Tab] key, the tcsh shell will complete the rest of the name
automatically. If the shell finds more than one name beginning with those letters you
have typed, it will beep, prompting you to type a few more letters before pressing the tab
key again.

• History: The shell keeps a list of the commands you have typed in. If you need to repeat
a command, use the cursor keys to scroll up and down the list or type history for a list of
previous commands.

6

• Mouse Buffer: Copying and pasting text in Linux between different text windows can
be easy. You just have to:

1. mark the text which you want to copy with the left mouse button
2. click with the left mouse button to where you want to paste the text
3. press the middle mouse button to paste the text

If you want to copy from PDF files (such as your script), you can for instance use the
program okular and use the [Selection] menu:

1. Click on Selection in the menu (it should become framed with a somewhat darker
background)

2. mark the part which you want to copy with the left mouse button (i. e. put a frame)
3. click with the left mouse button on “Copy to Clipboard”
4. click with the left mouse button to where you want to paste
5. press the middle mouse button to paste the text

1.2.2 Files and Processes
Everything in UNIX is either a file or a process.

A process is an executing program identified by a unique PID (process identifier).
A file is a collection of data. They are created by users using text editors, running compilers

etc.
Examples of files:

• a document (report, essay etc.)

• the text of a program written in some high-level programming language

• instructions comprehensible directly to the machine and incomprehensible to a casual
user, for example, a collection of binary digits (an executable or binary file)

• a directory, containing information about its contents, which may be a mixture of other
directories (subdirectories) and ordinary files.

1.2.3 The Directory Structure
All the files are grouped together in the directory structure. The file-system is arranged in a
hierarchical structure, like an inverted tree. The top of the hierarchy is traditionally called root.

7

In the diagram above, we see that the directory ee51ab contains the subdirectory unixstuff
and a file proj.txt

1.2.4 Graphical Desktop Environment

All modern Unix systems come with a graphical desktop environment which help you to handle
processes and software. There are several different graphical desktop environments and there
are a lot of possibilities to configure them. One popular desktop environments is KDE, which
can look like this:

In the left lower corner you have a start button (similar to Windows), there are icons on the
desktop (here Firefox), and there is a terminal window.

A terminal allows you to type commands in the command line and you can access the
files and directories on you system through this terminal. Terminals can be also run without
a graphical interface or also on remote computers, for instance on large compute clusters in
computing centers. Knowing how to use a the command line is essential for working efficiently
in computational science. Once you got used to it, you wonder how you could have ever used a
computer without a command line interface. The major goal of today’s practical is to introduce
you how to use the command line.

1.2.5 Web Browser

In the days of the internet, an efficient webbrowser and easy-to-use webbrowser is essential.
We recommend to use firefox, because it run on Linux as well as on Windows and Macs. Thus,
once you know how to use it, you can use it efficiently on different operation systems. In case
you are not familiar with firefox, it is worth to take ten minutes to try a few things:

• With [CTRL]+[+] and [CTRL]+[-] you can increase and decrease the size of the content
of the web page

8

• By right-clicking on a link, you can choose to open the linked page either in a new tab or
a new window; or also to save a file

• By clicking on the space just below the top frame, you can switch on and off a menu bar,
a bookmarks bar etc.

• You can bookmark pages that are interesting to you.

• In Preferences, you can set you starting page (Home Page), how you want to handle
download and many more things.

9

1.3 UNIX – Files and Directories

1.3.1 Listing files and directories

When you first login, you will get a desktop environment of Linux. In order to type your com-
mands, you will need a terminal. Getting a terminal window is dependent on the type and ver-
sion of the desktop manager you are using. What should normally work is clicking on the icon
in the left lower corner, search for terminal and choose one of them (for instance konsole).
Your current working directory is your home directory. Your home directory has the same name
as your user-name, for example, bpbi12, and it is where your personal files and subdirectories
are saved. In your terminal window, you should see something like

BI/bpbi01>

This is your prompt, which we will show as prompt: from now on. Do not type prompt:,
when you enter your commands!!!! The prompt may change when you are working.

ls (list)
To find out what is in your home directory, type

prompt: ls

The ls command (= short for list) lists the contents of your current working directory.
There may be no files visible in your home directory, in which case, the UNIX prompt will

be returned. Alternatively, there may already be some files inserted by the System Administrator
when your account was created.

ls does not, in fact, cause all the files in your home directory to be listed, but only those
ones whose name does not begin with a dot (.) Files beginning with a dot (.) are known as
hidden files and usually contain important program configuration information. They are hidden
because you should not change them unless you are very familiar with UNIX!!!

To list all files in your home directory including those, whose names begin with a dot, type

prompt: ls -a

ls is an example of a command which can take options: -a is an example of an option. The
options change the behavior of the command. There are online manual pages that tell you
which options a particular command can take, and how each option modifies the behavior of
the command (See later in this tutorial). In most unix programs, options start with a ’-’ sign,
like here for instance ’-a’.

1.3.2 Making Directories

We will now make a subdirectory in your home directory to hold the files you will be creating
and using in the course of this tutorial. To make a subdirectory called unixstuff in your current

10

working directory type

prompt: mkdir unixstuff

To see the directory you have just created, type

prompt: ls

1.3.3 Changing to a different directory
cd (change directory)

The command cd directory means change the current working directory to ’directory’.
The current working directory may be thought of as the directory you are in, i.e. your current
position in the file-system tree.

To change to the directory you have just made, type

prompt: cd unixstuff

Type ls to see the contents (which should be empty).

Exercise 1a: Make another directory inside the unixstuff directory called backups.
By typing

prompt: pwd

you can always see in which directory you are at the moment.

1.3.4 The directories . and ..
Still in the unixstuff directory, type

prompt: ls -a

As you can see, in the unixstuff directory (and in all other directories), there are two special
directories called (.) and (..)

In UNIX, (.) means the current directory, so typing

prompt: cd .

means stay where you are (in the unixstuff directory).
This may not seem very useful at first, but using (.) as the name of the current directory will

save a lot of typing, as we shall see later in the tutorial.

(..) means the parent of the current directory (one level up), so typing

11

prompt: cd ..

will take you one directory up the hierarchy (back to your home directory). Try it now.
Typing cd with no argument always returns you to your home directory. This feature is very

useful if you are lost in the file system.

1.3.5 Pathnames
Understanding pathnames

First type cd to get back to your home-directory, then type

prompt: ls unixstuff

to list the contents of your unixstuff directory.

Now type

prompt: ls backups

You will get a message like this

backups: No such file or directory

The reason is, backups is not in your current working directory. To use a command on a file
(or directory) not in the current working directory (the directory you are currently in), you must
either cd to the correct directory, or specify its full pathname. To list the contents of your back-
ups directory, you must type

prompt: ls unixstuff/backups

∼ (your home directory)

Home directories can also be referred to by the tilde ∼ character. It can be used to specify
paths starting at your home directory. So typing

prompt: ls ∼/unixstuff

will list the contents of your unixstuff directory, no matter where you currently are in the
file system.

What do you think ls ∼ would list?
What do you think ls ∼/.. would list?

1.3.6 Efficient working with the mouse and coursers
Now you have typed already some commands. As said above, the shell keeps a history of
your commands. In order to save typing work, you can access your previous commands. For

12

instance, if you need to repeat a command, use the cursor keys [up] and [down] to go up and
down the list or type history for a list of previous commands. You may modify your commands
by using the cursor keys [left] and [right] to position your cursor, [Tab] or [del] to delete parts,
and the other keys to type things. Try it out!

Another comfortable help in the tcsh shell (which is what you should be using) is the so-
called Tab-Completion. By typing part of the name of a command, filename or directory name
and pressing the [Tab] key, the tcsh shell will complete the rest of the name automatically. If
the shell finds more than one name beginning with those letters you have typed, it will beep,
prompting you to type a few more letters before pressing the tab key again. Try it, type:

prompt: ls unix[Tab]

The shell should complete the word to unixstuff.
Also the mouse buffer is a useful tool in most unix systems. With its help, copying and

pasting text in Linux between different text windows or even within the same text window is
easy. You just have to:

1. mark the text which you want to copy with the left mouse button

2. click with the left mouse button to where you want to paste the text

3. press the middle mouse button to paste the text

Try the mouse buffer for the last command you where typing.
Try to use these tools are you go along in this tutorial.

1.3.7 Summary
ls list files and directories
ls -a list all files and directories
mkdir make a directory
cd directory change to named directory
cd change to home-directory
cd ∼ change to home-directory
cd .. change to parent directory
pwd display the path of the current directory

13

1.4 Copy, Move and other File Handlings

1.4.1 Copying Files — cp (copy)
cp file1 file2 is the command which makes a copy of file1 in the current working
directory and calls it file2.

What we are going to do now, is to take a file stored in an open access area of the file system,
and use the cp command to copy it to your unixstuff directory.

First, cd to your unixstuff directory.

prompt: cd ∼/unixstuff

Then at the UNIX prompt, type,

prompt: cp /cip1/Kurse/BI/bpbi00/science.txt .

Do not forget the dot (.) at the end. Remember, in UNIX, the dot means the current directory.
The above command means copy the file science.txt to the current directory, keeping the

name the same.
The above directory is an area to which everyone in the CIP pool has read and copy access.

If you are from outside the CIP pool, you can get a copy of the file here. 2 You can download
the file through your webbrowser and save the file in your unixstuff directory.

Alternatively, you can also use the command line program wget to download the file:

prompt: wget http://www.bisb.uni-bayreuth.de/People/ullmann/pract/science.txt

Exercise 2a: Create a backup of your science.txt file by copying it to a file called
“science.bak”.

1.4.2 Moving files — mv (move)
mv file1 file2 moves (or renames) file1 to file2

To move a file from one place to another, use the mv command. This command has the
effect of moving rather than copying the file, so you end up with only one file rather than two.

It can also be used to rename a file, by moving the file to the same directory, but giving it a
different name.

Do not use rename unless you know how to use it!
We are now going to move the file science.bak to your backup directory.
First, change directories to your unixstuff directory. Then, inside the unixstuff directory,

type

prompt: mv science.bak backups

2http://www.bisb.uni-bayreuth.de/People/ullmann/pract/science.txt

14

http://www.bisb.uni-bayreuth.de/People/ullmann/pract/science.txt

Type ls and ls backups to see if it has worked.

1.4.3 Removing files and directories — rm (remove), rmdir (remove di-
rectory)

To delete (remove) a file, use the rm command. As an example, we are going to create a copy
of the science.txt file then delete it.

Inside your unixstuff directory, type

prompt: cp science.txt tempfile.txt
prompt: ls (to check if it has created the file)
prompt: rm tempfile.txt
prompt: ls (to check if it has deleted the file)

You can use the rmdir command to remove a directory (make sure it is empty first). Try
to remove the backups directory. You will not be able to since UNIX will not let you remove a
non-empty directory.

Exercise 2b: Create a directory called tempstuff using mkdir, then remove it using the
rmdir command.

1.4.4 Removing files and directories
clear (clear screen)

Before you start the next section, you may like to clear the terminal window of the previous
commands so the output of the following commands can be clearly understood.

At the prompt, type

prompt: clear

This will clear all text and leave you with the % prompt at the top of the window.

cat (concatenate)
The command cat can be used to display the contents of a file on the screen. Type:

prompt: cat science.txt

As you can see, the file is longer than than the size of the window, so it scrolls past making it
unreadable.

more
The command more writes the contents of a file onto the screen a page at a time. Type

15

prompt: more science.txt

Press the [space-bar] if you want to see another page, type [q] if you want to quit reading. As
you can see, more is used in preference to cat for long files.

less
The command less is similar to more, but has some additional features. Thus, less is

more. ;-)
(See below!)
head

The head command writes the first ten lines of a file to the screen.
First clear the screen then type

prompt: head science.txt

Then type

prompt: head -8 science.txt

What difference did the -8 do to the head command?

tail
The tail command writes the last ten lines of a file to the screen.
Clear the screen and type

prompt: tail science.txt

How can you view the last 15 lines of the file?

paste
merges lines of files.
prompt: paste science.txt science.txt

1.4.5 Searching the contents of a file
Simple searching using less

Using less, you can search though a text file for a keyword (pattern or regular expres-
sions). For example, to search through science.txt for the word ’science’, type

prompt: less science.txt

then, still in less (i.e. don’t press [q] to quit), type a forward slash [/] followed by the word to
search

16

/science

As you can see, less finds and highlights the keyword. Type [n] to search for the next occur-
rence of the word.
grep (global search for a regular expression and print out matched lines)

grep is one of many standard UNIX utilities. It searches files for specified words or pat-
terns. First clear the screen, then type

prompt: grep science science.txt

As you can see, grep has printed out each line containg the word science.
Or has it????
Try typing

prompt: grep Science science.txt

The grep command is case sensitive; it distinguishes between Science and science.
To ignore upper/lower case distinctions, use the -i option, i.e. type
prompt: grep -i science science.txt

To search for a phrase or pattern, you must enclose it in single quotes (the apostrophe symbol).
For example to search for spinning top, type

prompt: grep -i ’spinning top’ science.txt

Some of the other options of grep are:

-v display those lines that do NOT match
-n precede each maching line with the line number
-c print only the total count of matched lines

Try some of them and see the different results. You can use more than one option at a time,
for example, the number of lines without the words science or Science is

prompt: grep -ivc science science.txt

wc (word count)
A handy little utility is the wc command, short for word count. To do a word count on

science.txt, type

prompt: wc -w science.txt

To find out how many lines the file has, type

17

prompt: wc -l science.txt

1.4.6 Dealing with a PDB file
Protein structures are often save in PDB-files, where PDB stands for Protein Data Base. You
will here about these files later in the course. These files are often used for calculations and need
to be manipulated and analyzed in on way or another. A PDB-file contains the information on
the xyz-coordinates of the protein atoms, but also much more information, such as the name of
the molecule, the sequence, the publication associated with the structures etc. A typical pdb file
looks like this:

HEADER ION TRANSPORT 13-JUN-02 1M0L
TITLE BACTERIORHODOPSIN/LIPID COMPLEX AT 1.47 A RESOLUTION
COMPND MOL_ID: 1;
COMPND 2 MOLECULE: BACTERIORHODOPSIN;
....
JRNL AUTH B.SCHOBERT,J.CUPP-VICKERY,V.HORNAK,S.SMITH,J.LANYI
JRNL TITL CRYSTALLOGRAPHIC STRUCTURE OF THE K INTERMEDIATE OF
JRNL TITL 2 BACTERIORHODOPSIN: CONSERVATION OF FREE ENERGY AFTER
JRNL TITL 3 PHOTOISOMERIZATION OF THE RETINAL.
JRNL REF J.MOL.BIOL. V. 321 715 2002
JRNL REFN ISSN 0022-2836
JRNL PMID 12206785
JRNL DOI 10.1016/S0022-2836(02)00681-2
REMARK 2
REMARK 2 RESOLUTION. 1.47 ANGSTROMS.
REMARK 3
....
SEQRES 1 A 262 MET LEU GLU LEU LEU PRO THR ALA VAL GLU GLY VAL SER
SEQRES 2 A 262 GLN ALA GLN ILE THR GLY ARG PRO GLU TRP ILE TRP LEU
SEQRES 3 A 262 ALA LEU GLY THR ALA LEU MET GLY LEU GLY THR LEU TYR
SEQRES 4 A 262 PHE LEU VAL LYS GLY MET GLY VAL SER ASP PRO ASP ALA
SEQRES 5 A 262 LYS LYS PHE TYR ALA ILE THR THR LEU VAL PRO ALA ILE
.....
ATOM 1 N THR A 5 24.031 25.737 -13.776 1.00 61.46 N
ATOM 2 CA THR A 5 23.434 25.735 -15.107 1.00 62.71 C
ATOM 3 C THR A 5 24.050 26.801 -16.008 1.00 52.83 C
ATOM 4 O THR A 5 25.230 27.143 -15.939 1.00 57.70 O
ATOM 5 CB THR A 5 21.904 25.959 -15.048 1.00 72.95 C
ATOM 6 OG1 THR A 5 21.606 27.323 -14.739 1.00 65.89 O
ATOM 7 CG2 THR A 5 21.268 25.125 -13.939 1.00 79.47 C
ATOM 8 N GLY A 6 23.188 27.328 -16.866 1.00 54.58 N
ATOM 9 CA GLY A 6 23.573 28.387 -17.785 1.00 61.88 C
ATOM 10 C GLY A 6 23.443 29.740 -17.109 1.00 57.17 C
ATOM 11 O GLY A 6 23.744 30.785 -17.686 1.00 66.26 O
ATOM 12 N ARG A 7 22.983 29.700 -15.858 1.00 38.09 N
ATOM 13 CA ARG A 7 22.883 30.944 -15.098 1.00 33.50 C
ATOM 14 C ARG A 7 24.150 31.066 -14.279 1.00 24.94 C
...........

ATOM 1718 CA GLY A 231 15.552 30.886 32.019 1.00 46.38 C
ATOM 1719 C GLY A 231 16.523 30.690 33.171 1.00 48.04 C
ATOM 1720 O GLY A 231 17.627 30.201 32.976 1.00 43.33 O
TER 1721 GLY A 231
HETATM 1722 C1 LI1 A 601 4.259 63.398 -7.884 1.00 74.72 C
HETATM 1723 C2 LI1 A 601 4.424 64.911 -7.689 1.00 66.62 C
HETATM 1724 C3 LI1 A 601 5.774 65.371 -8.257 1.00 73.95 C
HETATM 1725 O1 LI1 A 601 3.174 63.197 -8.844 1.00 89.86 O
HETATM 1726 O2 LI1 A 601 4.306 65.241 -6.294 1.00 66.87 O
HETATM 1727 O3 LI1 A 601 5.535 65.490 -9.785 1.00 71.99 O
....
END

18

The lines starting with ATOM or HETATOM contain the information on the protein atoms
and on the cofactor atoms, respectively (such as atom name, residue name, residue number,
xyz-coorinates of the atoms etc.). An example PDB file, you can download directly from the
PDB using wget.

prompt: wget http://www.rcsb.org/pdb/files/1c3w.pdb

If you want now for instance to get all the lines that contain TRP (for tryptophan), you can
type

prompt: grep TRP 1c3w.pdb

You obtain a relatively long list and you may have to scroll to see the beginning of the list.
Exercise: Get a list of all lines that contain CA (for Cα of the aminoacid).

1.4.7 Summary
cp file1 file2 copy file1 and call it file2
mv file1 file2 move or rename file1 to file2
rm file remove a file
rmdir directory remove a directory
cat file display a file
more file display a file a page at a time
head file display the first few lines of a file
tail file display the last few lines of a file
grep ’keyword’ file search a file for keywords
wc file count number of lines/words/characters in file

19

1.5 Redirecting and Piping

1.5.1 Redirection
Most processes initiated by UNIX commands write to the standard output (that is, they write to
the terminal screen), and many take their input from the standard input (that is, they read from
the keyboard). There is also the standard error, where processes write their error messages, by
default, to the terminal screen.

We have already seen one use of the cat command to write the contents of a file to the
screen.

Now type cat without specifing a file to read

prompt: cat

Then type a few words on the keyboard and press the [Return] key.
Finally hold the [Ctrl] (or [STRG]) key down and press [d] (written as ˆD for short) to end

the input.
What has happened?
If you run the cat command without specifing a file to read, it reads the standard input (the

keyboard), and on receiving the’end of file’ (ˆD), copies it to the standard output (the screen).
In UNIX, we can redirect both the input and the output of commands.

1.5.2 Redirecting the Output
We use the > symbol to redirect the output of a command. For example, to create a file called
list1 containing a list of fruit, type

prompt: cat > list1

Then type in the names of some fruit. Press [Return] after each one.

pear
banana
apple
ˆD ([CTRL]+[SHIFT]+d to stop)

What happens is the cat command reads the standard input (the keyboard) and the >
redirects the output, which normally goes to the screen, into a file called list1

To read the contents of the file, type

prompt: cat list1

Exercise 3a: Using the above method, create another file called list2 containing the follow-
ing fruit: orange, plum, mango, grapefruit. Read the contents of list2.

20

The form>> appends standard output to a file. So to add more items to the file list1, type

prompt: cat >> list1

Then type in the names of more fruit

peach
grape
orange
ˆD ([CTRL]+[SHIFT]+d to stop)

To read the contents of the file, type

prompt: cat list1

You should now have two files. One contains six fruit, the other contains four fruit. We will now
use the cat command to join (concatenate) list1 and list2 into a new file called biglist.
Type

prompt: cat list1 list2 > biglist

What this command is doing is reading the contents of list1 and list2 in turn, then output-
ing the text to the file biglist.
To read the contents of the new file, type

prompt: cat biglist

1.5.3 Redirecting the Input

We use the < symbol to redirect the input of a command.
The command sort alphabetically or numerically sorts a list. Type

prompt: sort

Then type in the names of some vegetables. Press [Return] after each one.

carrot
beetroot
artichoke
ˆD ([CTRL]+[SHIFT]+d to stop)

The output will be

21

artichoke
beetroot
carrot

Using < you can redirect the input to come from a file rather than the keyboard. For example,
to sort the list of fruit, type

prompt: sort < biglist

and the sorted list will be output to the screen.
To output the sorted list to a file, type,

prompt: sort < biglist > slist

Use cat to read the contents of the file slist

1.5.4 Pipes
To see which programs are available in the directory (ordered by time) type

prompt: ls -t /usr/bin

The -t gives a temporal order of the files. One method to get a lexicographically sorted list
of names is to type,

prompt: ls -t /usr/bin > names.txt

prompt: sort < names.txt

This is a bit slow and you have to remember to remove the temporary file called names.txt
when you have finished. What you really want to do is connect the output of the ls -t
/usr/bin command directly to the input of the sort command. This is exactly what pipes
do. The symbol for a pipe is the vertical bar |. (On your keyboard, the pipe symbol look like
two vertical bars on top of each other).

For example, typing

prompt: ls -t /usr/bin | sort

will give the same result as above, but quicker and cleaner.
To find out how many files are in /usr/bin, type

prompt: ls /usr/bin | wc -l

Exercise 3b: Use pipes to get all lines of list1 and list2 containing the letter ’p’ and sort
the result.

22

1.5.5 Again dealing with a PDB file
Now we want to use pipes and redirections to deal with PDB files. Suppose you want to get a
list of all the tryptophan atoms. Before, you were typing

prompt: grep TRP 1c3w.pdb

but the list that you were obtaining was very long. Now if you pipe this output into more, you
can just go through the output step by step:

prompt: grep TRP 1c3w.pdb | more

But if you only want to get the lines that contain coordinates, you can combine two grep com-
mands with a pipe.

prompt: grep TRP 1c3w.pdb | grep ATOM | more

If you want to know the numbers of tryptophanes in your structure, you should just count one
atom. The Cα is a good choice since there is only one Cα in each aminoacids. Thus,

prompt: grep TRP 1c3w.pdb | grep ATOM | grep CA | more

If you are too lazy to count the lines yourself, let wc do the job for you.

prompt: grep TRP 1c3w.pdb | grep ATOM | grep CA | wc -l

Exercise: Get the charge of the apo-protein of 1c3w.pdb at pH=7. Remember that aspartate
and glutamate are negatively charged, lysine and arginine are positively charged. Histidine has
a 50:50 chance of being positively charged. A single command may not be enough. You may
have to type five command line commands.

1.5.6 Summary
command > file redirect standard output to a file
command >> file append standard output to a file
command < file redirect standard input from a file
command1 | command2 pipe the output of command1 to the input of command2
cat file1 file2 > file0 concatenate file1 and file2 to file0
sort sort data
who list users currently logged in

23

1.6 Wildcards and Help

1.6.1 The characters * and ?

The character * is called a wildcard, and will match against none or more character(s) in a file
(or directory) name. For example, in your unixstuff directory, type

prompt: ls list*

This will list all files in the current directory starting with list....

Try typing

prompt: ls *list

This will list all files in the current directory ending withlist.
The character ? will match exactly one character. So ls ?ouse will match files like

house and mouse, but not grouse. Try typing

prompt: ls ?list

1.6.2 Filename conventions

We should note here that a directory is merely a special type of file. So the rules and conventions
for naming files apply also to directories.

In naming files, characters with special meanings such as / * & % , should be avoided.
Also, avoid using spaces within names. The safest way to name a file is to use only alphanu-
meric characters, that is, letters and numbers, together with (underscore) and . (dot).

File names conventionally start with a lower-case letter, and may end with a dot followed
by a group of letters indicating the contents of the file. For example, all files consisting of C
code may be named with the ending .c, for example, prog1.c . Then in order to list all files
containing C code in your home directory, you need only type ls *.c in that directory.

Note that endings indicate the user (and sometimes also some programs) to which kind
of group or application the files belongs. In Linux, there is a special command file that
determines the type of the file, for instance “PDF document”, disregard of the ending of the file.

1.6.3 Getting Help

On-line Manuals
There are on-line manuals which gives information about most commands. The manual

pages tell you which options a particular command can take, and how each option modifies
the behaviour of the command. Type man command to read the manual page for a particular
command.

24

For example, to find out more about the wc (word count) command, type

prompt: man wc

Type q to exit. Alternatively

prompt: whatis wc

gives a one-line description of the command, but omits any information about options etc.

Apropos
When you are not sure of the exact name of a command,

prompt: apropos keyword

will give you the commands with keyword in their manual page header. For example, try
typing

prompt: apropos copy

1.6.4 Summary

* match any number of characters
? match one character
man command read the online manual page for a command
whatis command brief description of a command
apropos keyword match commands with keyword in their man pages

25

1.7 File Permissions and Process Handeling

1.7.1 File system security (access rights)
In your unixstuff directory, type

prompt: ls -l (l for long listing!)

You will see that you now get lots of details about the contents of your directory, similar to the
example below.

Each file and directory has associated access rights, which may be found by typing ls -l:

-rwxrw-r-- 1 ee51ab beng95 2450 Sept29 11:52 file1

In the left-hand column is a 10 symbol string consisting of the symbols d, r, w, x, -, and,
occasionally, s or S. If d is present, it will be at the left hand end of the string, and indicates a
directory: otherwise - will be the starting symbol of the string.

The 9 remaining symbols indicate the permissions, or access rights, and are taken as three
groups of 3.

• The left group of 3 gives the file permissions for the user that owns the file (or directory)
(ee51ab in the above example);

• the middle group gives the permissions for the group of people to whom the file (or
directory) belongs (eebeng95 in the above example);

• the rightmost group gives the permissions for all others.

The symbols r, w, etc., have slightly different meanings depending on whether they refer to
a simple file or to a directory.

26

Access rights on files:

• r indicates read permission, that is, the presence of permission to read and copy the file

• w indicates write permission, that is, the permission to change a file

• x indicates execution permission, that is, the permission to execute a file, where appropri-
ate

Access rights on directories:

• r allows users to list files in the directory;

• w means that users may delete files from the directory or move files into it;

• x means the right to access files in the directory. This implies that you may read files in
the directory provided you have read permission on the individual files.

So, in order to read a file, you must have execute permission on the directory contain-
ing that file, and hence on any directory containing that directory as a subdirectory, and
so on, up the tree.

Some examples

-rwxrwxrwx a file that everyone can read, write and execute (and delete).
-rw------- a file that only the owner can read and write - no-one else

can read or write and no-one has execution rights (e.g. your mailbox file).

1.7.2 Changing access rights
Only the owner of a file can use chmod to change the permissions of a file. The options of
chmod are as follows

Symbol Meaning
u user
g group
o other
a all
r read
w write (and delete)
x execute (and access directory)
+ add permission
- take away permission

For example, to remove read write and execute permissions on the file biglist for the
group and others, type

prompt: chmod go-rwx biglist

27

This will leave the other permissions unaffected.
To give read and write permissions on the file biglist to all,

prompt: chmod a+rw biglist

Exercise 5a: Try changing access permissions on the file science.txt and on the directory
backups. Use ls -l to check that the permissions have changed.

1.7.3 Processes and Jobs
A process is an executing program identified by a unique PID (process identifier). To see infor-
mation about your processes, with their associated PID and status, type

prompt: ps

A process may be in the foreground, in the background, or be suspended. In general the
shell does not return the UNIX prompt until the current process has finished executing.

Some processes take a long time to run and hold up the terminal. Backgrounding a long
process has the effect that the UNIX prompt is returned immediately, and other tasks can be
carried out while the original process continues executing.
Running background processes

To background a process, type an & at the end of the command line. For example, the com-
mand sleep waits a given number of seconds before continuing. Type

prompt: sleep 10

This will wait 10 seconds before returning the command prompt %. Until the command prompt
is returned, you can do nothing except wait.

To run sleep in the background, type

prompt: sleep 10 &

[1] 6259

The & runs the job in the background and returns the prompt straight away, allowing you do
run other programs while waiting for that one to finish.

The first line in the above example is typed in by the user; the next line, indicating job
number and PID, is returned by the machine. The user is be notified of a job number (numbered
from 1) enclosed in square brackets, together with a PID and is notified when a background
process is finished. Backgrounding is useful for jobs which will take a long time to complete.

1.7.4 Backgrounding a current foreground process
At the prompt, type

28

prompt: sleep 100

You can suspend the process running in the foreground by holding down the [control] key
and typing [z] (written as ˆZ) Then to put it in the background, type

prompt: bg

Do not background programs that require user interaction on the terminal.

1.7.5 Listing suspended and background processes
When a process is running, backgrounded or suspended, it will be entered onto a list along with
a job number. To examine this list, type

prompt: jobs

An example of a job list could be

[1] Suspended sleep 100
[2] Running netscape
[3] Running nedit

To restart (foreground) a suspended processes, type

prompt: fg %[jobnumber]

For example, to restart sleep 100, type

prompt: fg %1

Typing fg with no job number foregrounds the last suspended process.

1.7.6 Running Graphical Processesin the Background
The running jobs in the foreground or background or suspending a job becomes more obvious
when you are running graphical jobs. A good example is the text editor nedit. When you type

prompt: nedit

a window should open in which you can type. You can try to write for instance your name into
this window. The terminal window is however blocked, i.e. there is no prompt in the active
line where there cursor is and the commands you type do not have any effect. For instance,
when you type ls [ENTER] nothing happens. If you suspend the job using [CTRL]+[z]
the terminal is active again, but you can not type anything in the editor window. Try to type
something in the window where you wrote your name. You will see, nothing happens. If you

29

get the job in the foreground again by typing fg [ENTER] in your terminal window, the editor
is active again, but the terminal is blocked. Try it!

Suspending the job ([CTRL]+[z]) and shifting it in the background (bg [ENTER]) will
make the terminal active and your editor functioning. Try! Close the editor now through the
editors menu. If you restart your editor now with

prompt: nedit &

The job is immediately started in the background.

1.7.7 Killing a process
kill (terminate or signal a process)

It is sometimes necessary to kill a process (for example, when an executing program is in
an infinite loop)

To kill a job running in the foreground, type [CTRL]+[c]. For example, run

prompt: sleep 10000
ˆC

To kill a suspended or background process, type

prompt: kill %[jobnumber]

For example, run

prompt: sleep 10000 &
prompt: jobs

If it is job number 4, type

prompt: kill %4

To check whether this has worked, examine the job list again to see if the process has been
removed.

ps (process status)
Alternatively, processes can be killed by finding their process numbers (PIDs) and using kill

PID number

prompt: sleep 1000 &
prompt: ps

PID TT S TIME COMMAND
20077 pts/5 S 0:05 sleep 1000

30

21563 pts/5 T 0:00 netscape
21873 pts/5 S 0:25 nedit

To kill off the process sleep 100, type

prompt: kill 20077

and then type ps again to see if it has been removed from the list.
If a process refuses to be killed, uses the -9 option, i.e. type

prompt: kill -9 20077

Note: It is not possible to kill other users’ processes !!!

1.7.8 Summary
ls -lag list access rights for all files
chmod [options] file change access rights for named file
command & run command in background
ˆC kill the job running in the foreground
ˆZ suspend the job running in the foreground
bg background the suspended job
jobs list current jobs
fg %1 foreground job number 1
kill %1 kill job number 1
ps list current processes
kill 26152 kill process number 26152

31

1.8 Some More Useful Commands
df

The df command reports on the space left on the file system. For example, to find out how
much space is left on the fileserver, type

prompt: df .

du
The du command outputs the number of kilobyes used by each subdirectory. Useful you

want to find out which directory consumes most diskspace. In your home-directory, type
prompt: du

gzip
This also compresses a file, and is more efficient than an older program compress . For

example, to zip science.txt, type

prompt: gzip science.txt

This will zip the file and place it in a file called science.txt.gz
To unzip the file, use the gunzip command.

prompt: gunzip science.txt.gz

file
file classifies the named files according to the type of data they contain, for example

ASCII (simple text), pictures, compressed data, etc.. To report on all files in your home direc-
tory, type

prompt: file *

history
The C shell keeps an ordered list of all the commands that you have entered. Each command

is given a number according to the order it was entered.
prompt: history (show command history list)

If you are using the C shell, you can use the exclamation character (!) to recall commands
easily.

prompt: !! (recall last command)
prompt: !-3 (recall third most recent command)
prompt: !5 (recall 5th command in list)
prompt: !grep (recall last command starting with grep)
You can increase the size of the history buffer by typing

prompt: set history=100

32

1.9 Compiling UNIX software packages

We have many open source software packages installed on our systems, which are available to
all users. However, students are allowed to download and install small software packages in
their own home directory, software usually only useful to them personally.

There are a number of steps needed to install the software.

• Locate and download the source code (which is usually compressed)

• Unpack the source code

• Compile the code

• Install the resulting executable

• Set paths to the installation directory

Of the above steps, probably the most difficult is the compilation stage.

Compiling Source Code

All high-level language code must be converted into a form the computer understands. For
example, C language source code is converted into a lower-level language called assembly
language. The assembly language code made by the previous stage is then converted into object
code which are fragments of code which the computer understands directly. The final stage in
compiling a program involves linking the object code to code libraries which contain certain
built-in functions. This final stage produces an executable program.

To do all these steps by hand is complicated and beyond the capability of the ordinary user.
A number of utilities and tools have been developed for programmers and end-users to simplify
these steps.

make and the Makefile

The make command allows programmers to manage large programs or groups of programs.
It aids in developing large programs by keeping track of which portions of the entire program
have been changed, compiling only those parts of the program which have changed since the
last compile.

The make program gets its set of compile rules from a text file called Makefile which
resides in the same directory as the source files. It contains information on how to compile
the software, e.g. the optimisation level, whether to include debugging info in the executable.
It also contains information on where to install the finished compiled binaries (executables),
manual pages, data files, dependent library files, configuration files, etc.

Some packages require you to edit the Makefile by hand to set the final installation directory
and any other parameters. However, many packages are now being distributed with the GNU
configure utility.

33

configure

As the number of UNIX variants increased, it became harder to write programs which could run
on all variants. Developers frequently did not have access to every system, and the character-
istics of some systems changed from version to version. The GNU configure and build system
simplifies the building of programs distributed as source code. All programs are built using a
simple, standardised, two step process. The program builder need not install any special tools
in order to build the program.

The configure shell script attempts to guess correct values for various system-dependent
variables used during compilation. It uses those values to create a Makefile in each directory
of the package.

The simplest way to compile a package is:

• cd to the directory containing the package’s source code.

• Type ./configure to configure the package for your system.

• Type make to compile the package.

• Optionally, type make check to run any self-tests that come with the package.

• Type make install to install the programs and any data files and documentation.

• Optionally, type make clean to remove the program binaries and object files from the
source code directory

The configure utility supports a wide variety of options. You can usually use the --help
option to get a list of interesting options for a particular configure script.

The only generic options you are likely to use are the --prefix and --exec-prefix
options. These options are used to specify the installation directories.

The directory named by the --prefix option will hold machine independent files such as
documentation, data and configuration files.

The directory named by the --exec-prefix option, (which is normally a subdirectory
of the --prefix directory), will hold machine dependent files such as executables.

1.9.1 Downloading source code

For this example, we will download a piece of free software that converts between different
units of measurements.

First create a download directory
prompt: mkdir download

Download the software here 3,
and save it to your new download directory.

3http://www.ee.surrey.ac.uk/Teaching/Unix/units-1.74.tar.gz

34

http://www.ee.surrey.ac.uk/Teaching/Unix/units-1.74.tar.gz

1.9.2 Extracting the source code
Go into your download directory and list the contents.

prompt: cd download
prompt: ls -l

As you can see, the filename ends in tar.gz. The tar command turns several files and
directories into one single tar-file. This file is then compressed using the gzip command (to
create a tar.gz file).

First unzip the file using the gunzip command. This will create a .tar file.
prompt: gunzip units-1.74.tar.gz
Then extract the contents of the tar file.
prompt: tar -xvf units-1.74.tar
Again, list the contents of the download directory, then go to the units-1.74 sub-

directory.
prompt: cd units-1.74

1.9.3 Configuring and creating the Makefile
The first thing to do is carefully read the README and INSTALL text files (use the less
command). These contain important information on how to compile and run the software.

The units package uses the GNU configure system to compile the source code. We will
need to specify the installation directory, since the default will be the main system area which
you will not have write permissions for. We need to create an install directory in your home
directory.

prompt: mkdir ∼/units174
Then run the configure utility setting the installation path to this.
prompt: ./configure --prefix=$HOME/units174

NOTE:
The $HOME variable is an example of an environment variable. The value of $HOME is

the path to your home directory. Just type
prompt: echo $HOME
to show the contents of this variable. We will learn more about environment variables in a

later chapter.
If configure has run correctly, it will have created a Makefile with all necessary options. You

can view the Makefile if you wish (use the less command), but do not edit the contents of this.

1.9.4 Building the package
Now you can go ahead and build the package by running the make command.

prompt: make
After a few seconds (depending on the speed of the computer), the executables will be

created. You can check to see everything compiled successfully by typing
prompt: make check
If everything is okay, you can now install the package.

35

prompt: make install
This will install the files into the ∼/units174 directory you created earlier.

1.9.5 Running the software
You are now ready to run the software (assuming everything worked).

prompt: cd ∼/units174
If you list the contents of the units directory, you will see a number of subdirectories.

• bin — The binary executables

• info — GNU info formatted documentation

• man — Man pages

• share — Shared data files

To run the program, change to the bin directory and type
prompt: ./units
As an example, convert 6 feet to metres.
You have: 6 feet
You want: metres
* 1.8288

If you get the answer 1.8288, congratulations, it worked.
To view what units it can convert between, view the data file in the share directory (the list

is quite comprehensive).
To read the full documentation, change into the info directory and type
prompt: info --file=units.info

36

1.10 Variables and General Settings

1.10.1 UNIX Variables

Variables are a way of passing information from the shell to programs when you run them.
Programs look ”in the environment” for particular variables and if they are found will use the
values stored. Some are set by the system, others by you, yet others by the shell, or any program
that loads another program.

Standard UNIX variables are split into two categories, environment variables and shell vari-
ables. In broad terms, shell variables apply only to the current instance of the shell and are
used to set short-term working conditions; environment variables have a farther reaching sig-
nificance, and those set at login are valid for the duration of the session. By convention, envi-
ronment variables have UPPER CASE and shell variables have lower case names.

1.10.2 Environment Variables

An example of an environment variable is the OSTYPE variable. The value of this is the current
operating system you are using. Type

prompt: echo $OSTYPE

More examples of environment variables are

• USER (your login name)

• HOME (the path name of your home directory)

• HOST (the name of the computer you are using)

• ARCH (the architecture of the computers processor)

• DISPLAY (the name of the computer screen to display X windows)

• PRINTER (the default printer to send print jobs)

• PATH (the directories the shell should search to find a command)

Finding out the current values of these variables

ENVIRONMENT variables are set using the setenv command, displayed using the printenv
or env commands, and unset using the unsetenv command.

To show all values of these variables, type
prompt: printenv | less

37

1.10.3 Shell Variables
An example of a shell variable is the history variable. The value of this is how many shell
commands to save, allow the user to scroll back through all the commands they have previously
entered. Type

prompt: echo $history
More examples of shell variables are

• cwd (your current working directory)

• home (the path name of your home directory)

• path (the directories the shell should search to find a command)

• prompt (the text string used to prompt for interactive commands shell your login shell)

Finding out the current values of these variables.

SHELL variables are both set and displayed using the set command. They can be unset by
using the unset command.

To show all values of these variables, type
prompt: set | less

So what is the difference between PATH and path ?

In general, environment and shell variables that have the same name (apart from the case) are
distinct and independent, except for possibly having the same initial values. There are, however,
exceptions.

Each time the shell variables home, user and term are changed, the corresponding envi-
ronment variables HOME, USER and TERM receive the same values. However, altering the
environment variables has no effect on the corresponding shell variables.

PATH and path specify directories to search for commands and programs. Both variables
always represent the same directory list, and altering either automatically causes the other to be
changed.

1.10.4 Using and setting variables
Each time you login to a UNIX host, the system looks in your home directory for initialisation
files. Information in these files is used to set up your working environment. The C and TC
shells uses two files called .login and .cshrc (note that both file names begin with a dot).

At login the C shell first reads .cshrc followed by .login
.login is to set conditions which will apply to the whole session and to perform actions

that are relevant only at login.
.cshrc is used to set conditions and perform actions specific to the shell and to each

invocation of it.
The guidelines are to set ENVIRONMENT variables in the .login file and SHELL vari-

ables in the .cshrc file.

38

WARNING: NEVER put commands that run graphical displays (e.g. a web browser) in
your .cshrc or .login file.

In the practical, your settings are saved in .cshrc.own, while .cshrc is a link to a file in our
directories, which helps us to have the same settings for all students.

1.10.5 Setting shell variables in the .cshrc file
For example, to change the number of shell commands saved in the history list, you need to set
the shell variable history. It is set to 100 by default, but you can increase this if you wish.

prompt: set history = 200
Check this has worked by typing
prompt: echo $history
However, this has only set the variable for the lifetime of the current shell. If you open a

new konsole window, it will only have the default history value set. To PERMANENTLY set
the value of history, you will need to add the set command to the .cshrc.own file.

First open the .cshrc.own file in a text editor. An easy, user-friendly editor to use is
nedit.

prompt: nedit ∼/.cshrc.own
write the following line if the file is empty (or add it to the end of the file in case something

is written already in this file).
set history = 200
Save the file and force the shell to reread its .cshrc.own file buy using the shell source

command.
prompt: source ∼/.cshrc.own
Check this has worked by typing
prompt: echo $history

1.10.6 Setting the path
When you type a command, your path (or PATH) variable defines in which directories the shell
will look to find the command you typed. If the system returns a message saying ”command:
Command not found”, this indicates that either the command doesn’t exist at all on the system
or it is simply not in your path.

For example, to run units, you either need to directly specify the units path
(∼/units174/bin/units), or you need to have the directory∼/units174/bin in your
path.

You can add it to the end of your existing path (the $path represents this) by issuing the
command:

prompt: set path = ($path ∼/units174/bin)
Test that this worked by trying to run units in any directory other that where units is actually

located.
prompt: cd; units
HINT: You can run multiple commands on one line by separating them with a semicolon.
To add this path PERMANENTLY, add the following line to your .cshrc AFTER the list

of other commands.

39

set path = ($path ∼/units174/bin)

40

1.11 Editors
There are several Text-editors (ASCII-editors) under Linux. The most common editors that are
used by programmers are vi and emacs. These editors are however a bit more difficult to use.
An easier editor is for instance kwrite or nedit.

You are free to use whatever text editor (ASCII editor) in the practical (it has to be installed
on the system). Note, LibreOffice is NOT an ASCII-editor, but a word processor. Start the text
editor of your choice (i.e. for instance emacs or nedit but NOT libreoffice) and try to
get a bit familiar with it.

1.12 Webpages
Now your task is to make a small webpage, i.e. a HTML-Page, using an text editor. You find
general information on HTML and webpage development at selfhtml.org 4. In particular here 5,
you find some useful information on XHTML and differences to HTML.

Maybe needed/helpful:

• Encoding of umlauts 6,

• HTML reference 7,

Your task is to write a webpage that looks like this in a webbrowser (firefox or so):

The html-source of this page looks like this (in emacs).

4http://de.selfhtml.org/
5http://de.selfhtml.org/html/xhtml/unterschiede.htm
6http://de.selfhtml.org/html/allgemein/zeichen.htm#umlaute
7http://de.selfhtml.org/navigation/html.htm

41

http://de.selfhtml.org/
http://de.selfhtml.org/html/xhtml/unterschiede.htm
http://de.selfhtml.org/html/allgemein/zeichen.htm#umlaute
http://de.selfhtml.org/navigation/html.htm

Type the HTML-code of the page in an ASCII-Editor and replace the personal information
with your contact data (You do not have to give your telephone number, but it might be useful
if we want to contact you because of the protocol). Pay attention that you also replace the title
of the page! Write the correct link to the practical page into the webpage. Save the page as
“index.html”. Further Reading:

• XML Guide 8,

• XML annotated RFC 9,

Tasks:

• Legen Sie einen Ordner Praktikum und Unterordner Tag 1 bis Tag 5 an (Exakte
Schreibweise!). Alle Ordner müssen für Gruppenmitglieder lesbar und ausführbar sein
(Kommando chmod). Die Ordner dürfen nicht mehr Rechte haben als erforderlich (z.B.
nicht schreibbar für Gruppenmitglieder oder lesbar für alle).

• Speichern Sie die erstellte “Homepage” unter dem Namen index.html im Verzeich-
nis $HOME/Praktikum/Tag 1/Protokoll/ und bewegen Sie alle Daten (Kom-
mando mv), die Sie heute erzeugt bzw. bearbeitet haben, in das Verzeichnis
$HOME/Praktikum/Tag 1/ (Lese-Rechte!)

• Ein eigentliches Protokoll ist für diesen Tag nicht notwendig. Den Punkt gibt es
für die richtige Verzeichnisstruktur und Rechtevergabe sowie für das Bewegen der
Dateien. Entsprechend kritisch wird kontrolliert. Die grafische Benutzerschnittstelle
liefert wahrscheinlich falsche Ergebnisse.

8http://www.xml.com/pub/a/98/10/guide0.html
9http://www.xml.com/axml/testaxml.htm

42

http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/axml/testaxml.htm

Chapter 2

Sequences and Databases

Please use the directory $HOME/Praktikum/Tag 2 as you working directory for these ex-
ercises.

Basic use of Databases and Bioinformatic Analysis using Em-
boss

In this course, we will learn how to analyze sequences and how to use databases to obtain
more information on proteins There are many databases on the web. A long list is published
every January in the journal Nuclei Acid Research and accessible on this web site. 1 Also every
year (in July), Nuclei Acid Research publishes a list of webservers. This list is accessible on
this web site. 2 We will come back to some databases and webservers later in this course.

In this excercise, we will examine a circular DNA sequences. The sequence is given in this
file: unknown-cDNA.fasta. 3 Please download this file to your working directory.

Now we will analyze this sequence (download the file!):

> unkonwn circular DNA
TCAAATCTTCTTAGATGATGAACAGATGGGTAAAGGCTTCGCTCTACTTTGTGTTACTTACCCTCGTTCC
AACTGCACAATTAAGACCCACCAAGAACCGTACCTTGCTTAATTCATTGCTGTAGTCGCTACTATTTACA
GCTTGTGCAAGTGTAGCTTAAATCAGGATGAAGGATATTTTTCATCCTGATTTCTTATATAAATCTATTC
TGAAACGTTGCAATACAGGACTAGAACTTATCCAAAGAACATCGAGATCATCAGACATAAAGACACCAAA
TTATTAGGAATTAATACTGATCAATAGTCAATAATTCATAATCAACAGTCCATAGTAAGAGCTATAAACT
.
.
.
TAGAGGCTAGCAGCTACAGACTAGTCCCTAGCCTTTCTGTTTTTTCACTCTGTGTCTACATCCAATTAAA
ACCAGTGTCCAACTCTGGCTTAATTCTCGAAGAATTCAGGGAGATTTAACTTCGAGAACTATATCGATCC
TATAAATTTGAGGAGAATCGGCAAATGGCTAGCTACCAAGTTAGATTGATCAACAAGAAACAAGACATCG
ATACTACCATCGAGATTGATGAAGAAACCACAATTTTAGATGGCGCAGAAGAAAATGGTATTGAATTACC
TTTCTCTTGCCATTCTGGTTCTTGTTCTAGCTGTGTAGGCAAAGTTGTTGAAGGTGAAGTTGACCAATCT
GA

You can check with the commands less or more if the file was downloaded correctly.
1http://www.oxfordjournals.org/nar/database/c/
2http://bioinformatics.ca/links directory
3http://www.bisb.uni-bayreuth.de/People/ullmann/pract/unknown-cDNA.fasta

43

http://www.oxfordjournals.org/nar/database/c/
http://bioinformatics.ca/links_directory
http://www.bisb.uni-bayreuth.de/People/ullmann/pract/unknown-cDNA.fasta

2.1 Find ORFs in the Sequence
Now we want to see if there are region in this piece of DNA that code for protein, thus one
needs to look for open reading frames (ORF). We will use the software suite EMBOSS for the
sequence analysis. EMBOSS is a very useful collection of open source programs for sequence
analysis of all kind.

Use Google to find the EMBOSS webpage. Read ”About EMBOSS” to get a brief overview
of the program. The program jemboss is a graphical user interface for the EMBOSS software
suite. Here you see a screen shot of the program jemboss. You should get this picture by
typing jemboss in your terminal window.

Arrows indicate important points:

1. list of the programs by topic

2. alphabetical list of the programs

3. name of the current program

4. button for additional information on the current program

5. input options

6. advanced input options

44

All programs can also be used through a command-line interface. Alternatively you may
use a Webserver, which is listed on the EMBOSS Website. You can use for instance the site
Wageningen Bioinformatics Webportal, Netherlands.

Use the program getorf to find protein genes (Open Reading Frames) in the sequence of
your circular DNA. Use the advanced input options to analyse your circular DNA!

1. You are only interested in genes of protein with more than 80 aminoacids.

2. Restrict your output to the translation of regions between start and stop codons.

If you have done everything correctly, you should have four protein sequences.

Task 1:
Save the resulting file with the protein sequences as protein.fasta in you working direc-
tory Praktikum/Tag 2 and include the file in your protocol.

The program plotorf makes a graphical representation of the ORFs in a DNA. This
program also shows in which of the six reading frames the gene was found.

Task 2:
Use plotorf to generate a graphical representation of the ORFs und include this picture in
your protocol. Which gene was found in which reading frame?

2.2 Annotation of Protein Sequences
There are several widely used databases that are used to annotate protein sequences. One very
useful database is Pfam, 4.

Task 3:
Use Pfam to get information of the four genes. Concentrate only on the significant Pfam-
Matches. Include in your protocol what you found out about the four sequences.

2.3 Using Sequences to Find Structures
The Protein Data Bank (PDB) at the Research Collaboratory for Structural Bioinformatics
(RCSB) 5 is a collection of all published protein and nucleic adic structures. This database
has a very powerful user interface. Several searches can be performed. We will now use this
database to see if there are structures available for the proteins which we found as genes in the
circular DNA.

Make a sequence search in the PDB; use the advance search. Look at the search option at
the page. Search using the four protein sequences (keep the default settings). Look at the search

4http://pfam.xfam.org/
5http://www.rcsb.org/

45

http://pfam.xfam.org/
http://www.rcsb.org/
http://www.rcsb.org/

results ([Reports:]/[BLAST/FASTA/PSI-BLAST Results]). You can download the files through
the web-interface. You can go to the PDB home page and simply search the PDB code that you
want.

However, many databases allow a non-interactive download, i.e. without web browsers.
This feature is very useful if you know which datafiles you need to download or which directo-
ries you need to download. Then you can script your downloads. A linux-program to make such
download is wget. From the PDB, you can for instance download structures, if you know the
PDB-code of the structure. For instance, to download the structure with the PDB-code 1n62,
you can type in your ’konsole’

wget http://www.rcsb.org/pdb/files/1n62.pdb

Task 4:
Search for structures of the four proteins that you found in your piece of DNA. Do a Sequence
Search. Add to your protocol a table in which you list:

• the ORF number in your DNA (as given in your getorf output)

• the structures with the highest scores. There might be more than one structure per se-
quence. Do not consider mutants.

• PDB Code, information on the protein

• name of the PDB enetry (title)

• resolution of the structure (quality of the data; the smaller the numerical value of the
resolution, the better the structure)

Download these PDB files into a new subdirectory called PDB in your working directory
Praktikum/Tag 2.

2.4 Getting Information on Literature, Downloading Papers

Many or probably all scientific journals allow to download articles from the web in the form of
PDF-files. Often, you or your institution (university) needs a subscription to the journal to be
able to download the articles as PDF files.

Literature databases help you to find the articles you need.
Pubmed 6 is a database that covers much of the published articles in biological science. You

can search this database relatively easily. More advanced searches can profit from so-called
MESH terms, a controlled vocabulary to support a very effective search. However, you can also
get a direct link from the PDB to Pubmed. From Pubmed, you can often access directly the
articles in the scientific journals. The link to the article is normally found at the right upper
corner of the webpage. Sometimes, there is no link in Pubmed. In this case, the best is to go to
the journal website and search there.

6http://www.ncbi.nlm.nih.gov/pubmed/

46

http://www.ncbi.nlm.nih.gov/pubmed/

Task 5:
Download the PDF-files in which the downloaded structures were published. Save these PDF-
files in a new subdirectory called Paper in your working directory Praktikum/Tag 2.
Name the files like this: [PDB-code]-paper.pdf. The easiest way is probably to go
through the PDB-webpage.

Task 6:
Two of your four proteins are different ferredoxins from the same organism (i.e. they have
different sequences). Look through the papers that you downloaded and write down the different
functional tasks of these two ferredoxins.

Task 7:
A very good review on these proteins was published by Carrillo and Ceccarelli.
Search this review paper in Pubmed and download the PDF-file. Save it as
Praktikum/Tag 2/Paper/review.pdf.

Another important literature database is Web of Science. 7 However, this database is not
free and requires (institutional) subscription. With this database, you have not only access to
the abstract of articles, but you can also see which articles are cited by the found article, and
probably more important, which articles cite your article of interest. With this feature, you have
access to literature that is relevant for your work, but was published after the article you are
looking at.

Task 8:
Search in this database the review article by Carrillo and Ceccarelli. How often was this article
cited? Which article cited this paper for the first time? Write down the citation in the format:
Author, A. B.; Author, C. D. (YEAR): Title. Journal Vol., xx-yy

2.5 Kegg und Brenda

Two other very useful databases are KEGG 8 and Brenda. 9 The first tries to organize most of
the biochemical knowledge, the second contains information about individual enzymes. Go to
the KEGG database and then to the sub-database ”PATHWAY”.

As you know by now, the enzyme ferredoxin-NADP reductase (FNR) is involved in photo-
synthesis. It transfers electrons from ferredoxin to NADP. Go to photosynthesis page of KEGG
to learn more about this reaction.

Task 9:
From where does ferredoxin receive its electron?

7http://apps.webofknowledge.com/
8http://www.genome.ad.jp/kegg/
9http://www.brenda-enzymes.info/

47

http://apps.webofknowledge.com/
http://www.genome.ad.jp/kegg/
http://www.brenda-enzymes.info/

Task 10:
What is the enzyme code of FNR and what is the meaning of the code. You can find the
information on the IUBMB Enzyme Nomenclature webpage. To find this page, click on the
enzyme and go to the bottom of the page.

Task 11:
For which reaction is the reduced NADPH used in photosynthesis (You may also use other web
resources). Which enzymes catalyze this reaction and what is their Enzyme Code. What is the
meaning of the code?

Go to the webpage of Brenda 10 which is also linked at the bottom of the previous KEGG-
webpage. Brenda gives a lot of information on enzymes and lists much of the current knowledge
and links to many databases.

Task 12:
Which synthetic inhibitors exist for FNR? List two.
Task 13:

What is the KM value of FNR using dibromothymoquinone as substrate? What is the structure
of dibromothymoquinone?

2.6 Search with Chemical Structures
Suppose you want to repeat the measurement of the Michaelis-Menten kinetics using dibro-
mothymoquinone as substrate. For this you need to order the molecule from a company, for
instance from Sigma-Aldrich. 11 On their webpage, you can also search for structures. Do a
Structure Search using the JME editor. (Go to the very bottom of the page. There is a link on
the left side). Draw the structure and search for the molecule.

Task 14:
What is the price of dibromothymoquinone from this company? Which amount do you get?

Task 15:
What is the expected product of the reduction of dibromothymoquinone? Draw the structure
using chemtool (or other chemical drawing software like bkchem) and include a picture in
your protocol.

Similar procedures can be used to make literature searches for instance using SciFinder or
structure searches in the Cambridge Structural Database. However, our unviversity has only a
limited number of licenses for these databanks which make it difficult to use these databanks in
practical courses.

10http://www.brenda-enzymes.info/
11http://www.sigmaaldrich.com/germany.html

48

http://www.brenda-enzymes.info/
http://www.sigmaaldrich.com/germany.html

Chapter 3

Sequence Alignments

You will perform pairwise and multiple sequence alignments. You will use programs installed
on your computer as well as web services. We will continue to work on the sequences that we
were starting to use last week. First we give you some background information to remind you
then we start with the alignments.

3.1 Ferredoxin-NADP(H)-reductase

Ferredoxins (Fd) and ferredoxin-NADP(H)-reductases (FNR) are electron transfer partners,
which means that they interact with each other to transfer electrons. They are a part of the
photosynthetic electron transfer chain. This system is well-studied for the cyanobacterium An-
abaena (= Nostoc) but not for the model plant Arabidopsis thaliana.

The figure represents the complex between the FNR (red) and Fd (green) from Anabaena.
The important residues responsible for their interaction are listed in the table (Mayoral, et al.
(2005) Proteins, 59, 592-602):

FNR Fd
R16 D67
K75 E94
K138 D68
K290 D23
K293 D59
L76/L78 F65

On the other hand, there is no information available for this complex from A. thaliana.
This electron transfer complex is very intesting in many respect. For instance in heterocysts,

i.e. cells that are not photosynthetically active, but perform nitrogen fixation, the normal ferre-
doxin is replaced by a so-called heterocyst ferredoxin. Also on this complex there is not much

49

information. Moreover, under iron deficiency, Anabaena expresses a flavodoxin which contains
an FMN as redox cofactor instead of an iron sulfur cluster.

Your task is to derive some information about these complexes using sequence alignments.

3.2 Dot-Plots and Pairwise Sequence Alignments

Last time, you downloaded some PDB files (Code: 1QUF, 1QT9, 1FRD, 1FLV). Use the
PDB files now. In addition download the PDB file with the code 1E9M (ferredoxin VI from
Rhodobacter capsulatus). We wrote a little perl script that converts the sequence in a PDB-
file into a FASTA-file. Save the perl-script createfasta.pl 1 and the file aminoacids.txt. 2 to
your working directory. Make createfasta.pl executable (chmod +x) Use this script to make
FASTA-files from the PDB-files that you have.

%createfasta.pl [pdb file] aminoacids.txt > [fasta file]
Replace the whole expression in square brackets (including the brackets) by the appropriate

file names.

Task 1: Use the EMBOSS-program dottup to compare the sequences of ferredoxin, heterocyst
ferredoxin, ferredoxin VI from R. caps. and flavodoxin. Make all pairwise comparisons. Use
the wordsizes 2 and 10. Compare your results. Why are the pictures different for different
wordsizes. Include in your protocol the generated dotplots. What can you conclude from these
dot plots and why.
Task 2: Use the EMBOSS-program dotpath to compare the normal ferredoxin, ferredoxin VI
from R. caps. and heterocyst ferredoxin. Use the wordsizes 4 and 2. Include in your protocol
the generated dotplots. Explain the difference between dotpath and dottup. Use for instance
the information system of jemboss to get this information.
Task 3: Use the EMBOSS-program needle to make a pairwise alignment of the normal ferre-
doxin, heterocyst ferredoxin and ferredoxin VI from R. caps.. Use the different substitution
matrices EPAM250 and EBLOSUM62. Include the alignments in your protocol. Pay attention
that you use the correct fonts to display the alignment (’courier’ combined ’preformated text’
should be for instance ok) so that the alignment can be seen. Compare the results. Are the
alignments with different substitution matrices the same? Discuss your observations.

3.3 Multiple Sequence Alignment for Ferredoxin and FNR

Please read until the end before you proceed!

Task 4: Perform a multiple sequence alignment of ferredoxin as described below.

For that purpose, we need to obtain many sequences, which we will get using BLAST and
then we perform a progressive sequence alignment using ClustalOmega.

1http://www.bisb.uni-bayreuth.de/People/ullmann/pract/createfasta.pl
2http://www.bisb.uni-bayreuth.de/People/ullmann/pract/aminoacids.txt

50

http://www.bisb.uni-bayreuth.de/People/ullmann/pract/createfasta.pl
http://www.bisb.uni-bayreuth.de/People/ullmann/pract/aminoacids.txt

• Take the ferredoxin sequence from Anabaena (PDB code 1QT9). Go to the BLAST page
on the NCBI webpage and ”blast” using this sequence (use Protein BLAST). Note that
now Anabaena may appear also under the synonym Nostoc. sp. You can have a look at
the taxonomy server to verify this synonym.

• Select sequences from your BLAST search for the multiple sequence alignment. You
should use ten sequences in addition to the one from Anabaena. Include the sequences
of ferredoxin from Arabidopsis thaliana. Choose five sequences of other organisms that
have a sequence identity of less than 90% and more than 65% and five organisms that
have a sequence identity of less than 65%. Make also sure that the sequences you choose
do not belong to organisms of the same genera (Gattung). To ensure that, it might be
helpful to have a look on the taxonomy report of the results.

• REMARK: In order to find the homologous ferredoxin sequences form Arabidopsis thaliana,
you need to restrict the search to this organism only.

• Download the sequences in FASTA format (10 sequences plus homologous sequences
from Arabidopsis thaliana. Include the query sequence.

• Next you should align the sequences using the web interface to the program ClustalOmega
provided at the EBI-webpage. This program performs multiple sequence alignments.
Use this program for multiple sequence alignment of your ferredoxin sequences. Save
the sequence alignment on your hard disk in the clustal-format (=”.aln”-format). Give
sensible names to the files.

• Visualization of the alignments: You can view the alignment with JALVIEW directly on
the webpage (in Results Summary). In order to view also the sequence alignment that
you saved on your disk, you can use jemboss (Menu: Tools).

Task 5:
Apply the procedure described above for ferredoxin now to the ferredoxin-NADP(H)-reductase
(FNR) from Anabaena (PDB code 1QUF). Search from FNR genes in the genome of A.
thaliana. Save all the FASTA files as well as alignment files. Find the residues in Fd and FNR
from A. thaliana (from the sequences with the highest E-value) which are aligned to those from
the given table for the Anabaena system. Are these residues conserved? Which conclusions can
you get?
For the Protocol
Copy the .clustalw-files of the two alignments in your ”Protokoll”-directory of today. Include in
your protocol a table in which you list the residues of the FNR and Ferredoxin from A. thaliana
that align with the interacting residues of FNR and Ferredoxin from Anabaena.

51

52

Chapter 4

Protein Structure Visualization

VMD Tutorial
This tutorial gives you a guide through the main functions of VMD, a molecular graphics

program designed for the interactive visualization and analysis of biopolymers such as proteins,
nucleic acids, lipids, and membranes. Detailed documentation can be found at this web site
web site. 1 In this tutorial, the functions of VMD will be explained briefly in the first chapter.
Afterwards you will examine the enzyme ferredoxin:NADP+ reductase (FNR) and binary com-
plexes of this enzyme with ferredoxin and NADP. You will model a ternary complex of FNR
with ferredoxin and NADP. After going through all the four chapters, you should be able to
make a nice and informative figure of FNR.

For this figure and the answers to the questions in the text, you will get the point for the
practical.

4.1 How to use vmd

To start vmd, type vmd in your shell.

1. The three VMD Windows

When you open vmd, three windows will pop up (shown in the figure below):

1http://www.ks.uiuc.edu/Research/vmd/current/docs.html

53

http://www.ks.uiuc.edu/Research/vmd/current/docs.html

1. Graphics Display: This window displays the loaded molecules. By clicking in it you
can rotate or translate the protein.

2. vmd main: The main window shows you the molecules you have loaded and provides
the graphical user interface to all functions of vmd (for more detailed information see
below).

3. vmd console: All functions available from other windows can also be called from the
console by typing appropriate commands. The command ”rotate y by 90” for example,
will rotate your molecule by 90 degrees around the y axis. Additionally, it shows infor-
mation about the program status, the molecule and the function in use. In many Unix
systems, the console is not an extra window, but the console from which you started vmd.

2. The vmd main window and its functions
The main menus of the vmd main window are marked in the figure below and are explained

in the text.

54

1. File: Here you can load a new molecule (new molecule...) VMD can display multiple
molecules at the same time. You can save the currently displayed state (save state...).
You can also reopen a previously saved state, restoring all your previously made settings
including your loaded molecule, its orientation, its representation, its color and everything
else (load state...). You can make a picture by using Render and you can exit the program
with Quit.

2. Molecule: Besides other functions, you can delete a molecule (delete molecule...).

3. Graphics: Besides other functions, you can change here the representation (Representa-
tion...) of your molecule and the coloring scheme (Colors...) for example for the back-
ground or certain atom types and so on. The representation functions will be explained in
more detail below.

4. Display: Here you can change the view of the protein between perspective and ortho-
graphic. Additionally, you can change the light in the OpenGL display by switching on
or off light1 to light4.

5. Mouse: You can change the function of the mouse in the OpenGL window between
translate, rotate, scale and query mode (keyboard shortcuts t, r, s, 0) . In addition, you can
label atoms (by pressing 1) and measure distances (by pressing 2), angles (by pressing 3)
or dihedral angles (by pressing 4).

6. Extensions: Here some helpful tools are located like the calculation of a ramachandran
plot or the rsmd between two structures. You can also superimpose two molecules here.

55

3. The Graphical Representation Window

• a) Selected Molecule: Here you can choose for which of the loaded molecules you want
to make changes to its representation.

• b) Create Rep: with this button you can create a new representation.

• c) Delete Rep: lets you delete a representation

• d) Representation Window: This window shows you a list of all the representations
for the molecule (you might have more than one, for example to see the protein and its
cofactors in different representations).

• e) Selected Atoms: In this line you specify a selection of atoms for which you want to
display a certain representation. The selection window (see g) might help you to type in
the right command for selection.

56

• f) Draw style: Here you can change the drawing style of the active representation. In the
above figure, this tab is active.

• g) Selection Shows: you different ways to select parts of your molecules. Shows for
example all residue names found in the molecule. (The functions of this tab are not
shown in the figure above).

• h) Coloring Method: You can color the selected atoms in different ways. When you click
here this, a menu will pop up, where you can choose how to color you representation.

• i) Drawing Method: Here you can select how to draw the selected atoms. For example
you could draw a cofactor in cpk and the protein in Ribbons. With VDW the selection is
shown as interlocking spheres with Van-der-Waals radii.

• j) Material: You can choose between opaque and transparent drawing of your represen-
tation.

4. A General Hint
The defaults view in vmd is the perspective view, in which objects which are far away are

smaller than those nearby. Some people (for instance the author if this text ;-)) might find that
disturbing. In the orthographic view, all objects appear at the same scale. You can change this
view in the VMD Main window, in Display.

4.2 The complex of ferredoxin:NADP+ reductase with ferre-
doxin

Please download the structure of the complex of ferredoxin:NADP+ reductase with ferredoxin
from the PDB. The PDB code is 1EWY.

1. Overall structural organization
Start vmd and load in the structure 1ewy.pdb. Change the view of the protein. Open the

Graphical Representation-Window (Menu: Graphics – Representations).
Now color each protein chain differently, use in the Graphical Representation-Window
Drawing Method -- Cartoon and Coloring Method ->Chain. How many pro-
tein chains can you spot? In this structure, two chain of FNR are cocrystallized with ferredoxin.
Can you identify the ferredoxin?

Now, select only ferredoxin! In order to do so, you can go to Selection. There under
keywords you will find chain and when you click on chain, the names of the chains are
listed in the window value. Select the chain of ferredoxin.

To make the structure better visable, you may want to choose a different color. To do so,
you can choose the color by ColorID.

2. Ferredoxin
Ferredoxin binds a redox-active metal center. In order to identify this center, create a new

representation and type not protein and chain X in Selected Atoms (set X to the chainid
of ferredoxin) . Change the drawing method to CPK and the coloring method to Name. Zoom in

57

(turn the mouse wheel) and identify the residues that are shown as spheres. When you change
in the main window Mouse --- Query and you click on an atom of the cofactor you will
see in the vmd console something like that:

with the following meaning

• name: refers th the name of the atom you clicked at.

• type: is the atom type of the atom.

• index: is the number in the pdb file for your atom.

• resname: is the name of the type of residue (like HEA for heme a molecule) you clicked
at.

• resid: is the number of this residue (every residue has its own number, specifying a
certain heme in this case).

• in the end the coordinates of your atom is shown. (x,y,z)

The redox-active center is coordinated by four protein residues. Find these residues by again
creating a replica of the representation and selecting the residues close to the redox active center.
For instance, by typing in Selected Atoms: “within 20.0 of (resid 567 and chain R)” you
would select all residues within 20.0 Å around the residue with the resid 567 of chain R. You
need to adapt this selection to your case.

Task 1: Which redox-cofactor is bound to ferredoxin? List protein residues that coordinate the
redox cofactor.

3. FNR
There are two chain of FNR in this crystal structure. Only one of them is most likely in a

position that represents the functional situation, i.e., in a orientation in which FNR can accept
electrons from ferredoxin. In order to identify the chain that is in the active position, you first
need to select the redox-active groups of FNR and then measure the distances between the redox
cofactors of the proteins. The shorter the distance, the better the electron transfer activity.

To measure the distance between the two redox-active groups, click in the vmd main window
on Mouse -- Label -- Bonds and then on atoms of the redox-active groups.

58

Task 2: What is the redox-active cofactor of FNR? Briefly describe the redox chemistry of this
cofactor (reaction scheme and a few sentences). What is the shortest distance (approximate!)
between the redox-active sites in FNR and ferredoxin (give the approximate distances between
the redox-active site of ferredoxin and the redox-active sites of the two FNRs, use a meaningful
number of digits and give a unit!)

Task 3: What is the chainid of the FNR that is most likely in a good position to accept electrons
from ferredoxin?

To remove the labels go to Graphics->Labels where you can delete the atom and bond
labels! You can select all labels at once by pressing the SHIFT key while selecting the first and
last label.

At this point, you know about some basic usage of vmd. You can learn more about it on the
VMD webpage. 2

In particular, it might be good to glance through (not everything needs to be read in detail!):

• Using the Mouse in the Graphics Window. 3

• Description of each VMD form. 4

• Molecular Drawing Methods. 5

4.3 Analysis of the complex of FNR with NADP

The PDB contains structures of Anabeana ferredoxin with NADP (PDB code: 1gjr and 2bsa).
NADP does not have a favorable conformation for hydride transfer in one of the structures. You
can compare the structures by superimposing (= structurally aligning) them.

To superimpose the structure, you can use VMD. Load the two structures into vmd. Se-
lect Extensions/Analysing/RMSD Calculator. Align both structures and calculate the RMSD
afterwards.

Task 4: In which structure is the hydride transfer easily possible? Why?

Task 5: Which structural change is required in the “inactive” structure to make an easier
transfer?

Task 6: Which protein residues of the active site could be functionally important for the cat-
alytic reaction of the enzyme?

2http://www.ks.uiuc.edu/Research/vmd/current/docs.html
3http://www.ks.uiuc.edu/Research/vmd/current/ug/node30.html
4http://www.ks.uiuc.edu/Research/vmd/current/ug/node37.html
5http://www.ks.uiuc.edu/Research/vmd/current/ug/node53.html

59

http://www.ks.uiuc.edu/Research/vmd/current/docs.html
http://www.ks.uiuc.edu/Research/vmd/current/ug/node30.html
http://www.ks.uiuc.edu/Research/vmd/current/ug/node37.html
http://www.ks.uiuc.edu/Research/vmd/current/ug/node53.html

4.4 Model of the Ternary Complex of FNR, Ferredoxin and
NADP

You have realized that there are several structures of FNR complexes, representing several func-
tional and non-functional intermediates. However, no crystal structure of a ternary complex is
available. But the information contained in several structures could be combined.

For instance, this shell-script models a structure which combines the information contained
in two PDB-files.

(Just for information: A shell script is a plain ASCII text file. It is a list of commands which
you would normally have issued yourself on the command line.)

#! /bin/csh
#
C-Shell script for generating a model of an FNR/Fd/NADP-complex
#
#==
#

define the prefix of the PDB files are variables
#
set ref = 1ewy
set nadp = 1gjr

convert the sequence read from the ATOM-records of the
PDB-file to a fasta file
#
the command "head -8" writes the first eight line of the output
#
pdb2fasta $ref.pdb ATOM | head -8 > $ref.fasta
pdb2fasta $nadp.pdb ATOM > $nadp.fasta

make a sequence alignment using needle of the EMBOSS package.
This is the command line usage of the program that you used
through jemboss
#
the resulting alignment will be written to the file ‘align.fasta‘
#
needle -asequence $nadp.fasta \

-bsequence $ref.fasta \
-gapopen 11 -gapextend 1 \
-aformat3 fasta \
-outfile align.fasta

superimpose (= structurally align) the two structures for which the
sequence alignment is given in the file ‘align.fasta‘.
#
The first structure in the ‘align.fasta‘ will serve as reference,
the second structure is superimposed to it.
The resulting superimposed structure is written to a file called
’kabsch.pdb’
#
kabsch align.fasta B > kabsch-bb.out

60

#
This generates now a model containing the Ferredoxin, NADP (unproductive
conformation), and FNR from the PDB file 1gjr in an orinetation that is
superimposed with the FNR in an orientation superimposed with
the FNR/Fd complex (PDB 1ewy)
#
the command "grep -E ˆ".{21}C" selects all line that contain the
character ’C’ in the 21st column of the file (chain-id of the protein)
#
cat kabsch.pdb > model.pdb
cat $ref.pdb | grep -E ˆ".{21}C" >> model.pdb

Task 7: Make a model of the ternary Complex of FNR, Ferredoxin and NADP. The generated
model of the ternary should contain the FNR mutant (Y303S) with NADP in the productive
conformation and ferredoxin.

You can copy the lines from the script above or you can download script.csh 6 and run
it directly. In case you copy the lines using the mouse, pay attention the character “∧” is not
reproduced correctly. Use the keyboard!

4.5 Preparation of a Figure of the Ternary Complex

Task 8: Make a figure of the complex modeled in Task 7 having the following features:

• all cofactors and important residues are highlighted (for instance licorice)

• the protein backbone is shown as a cartoon

• the peptide chains should have different colors

• the overall oriention should be clear, so that the important features can be seen

Include this figure in your protocol and describe what is seen (which color is what etc.). To
save ink, you may want to use a white background (Menu: Graphics -- Colors --
Display -- Background)

To get the figure:

1. Load the modeled structure into VMD

2. Make all the required operation so that the picture fulfills the requirements above and you
like the picture on the screen

3. Click in the main VMD window to File --- Render.... A new window will pop
up. Change the name and press save. The saved snapshot will be opened in a new window.

6http://www.bisb.uni-bayreuth.de/People/ullmann/pract/script.csh

61

http://www.bisb.uni-bayreuth.de/People/ullmann/pract/script.csh

62

Chapter 5

Continuum Electrostatics

Continuum Electrostatics Calculations using APBS
The electrostatics of a biomolecule can be modeled using the Poisson-Boltzmann equa-

tion. This partial differential equation describes the protein as a low-dielectric region with fixed
charges (defined by the position of the atoms) in water, a high-dielectric region, with solvated
ions. The ions adopt a Boltzmann distribution in the electrostatic field of the protein.

∇ [ε(r)∇φ(r)] = −4π

(
ρp(r) +

K∑
i=1

cbulki Zieo exp

(
−Zieoφ(r)

RT

))
The symbols in the equation have the following meaning:

• ∇ represents the differential operator: ∇ = (∂
∂x
, ∂
∂y
, ∂
∂z
)

• φ(r) electrostatic potential

• ε(r): relative permittivity (position dependent “dielectric constant”)

• ρp(r): charge density due to the protein

• cbulki ion concentration in the bulk solution

• Zi charge number

• eo elementary charge

• R gas constant

• T temperature

• K number of ionic species

Solving this equation means determining the electrostatic potential φ(r). Analytically, this
equation can only be solved for special cases. For irregular objects such as proteins, the equation
needs to be solved numerically, for instance with the help of the finite difference method.

The program apbs (Adaptive Poisson-Boltzmann Solver) determines this numerical solu-
tion. This numerical solution can be visualized to give an optical impression of the electrostatic
potential of a protein. However, it can also be used to calculate electrostatic interaction energies
and solvation energies. This practical gives a short introduction into the usage of apbs.

63

5.1 Structure Preparation
In order to perform electrostatic calculations on the biomolecular structure you are interested
in, one needs to provide:

• atomic coordinates

• atomic partial charge

• atomic radii

The program apbs reads this information in form of a PQR-file, which is a modified PDB
file. Atomic partial charges are used to define the biomolecular charge distribution for the
Poisson-Boltzmann (PB) equation while the radii are used to construct the dielectric and ionic
boundaries.

The PQR-format provides a very simple way to include parameter information by replacing
the occupancy and temperature columns of a PDB-format structure file (columns after the xyz-
coordinates) with charge (”Q”) and radius (”R”) information.

Here are the first few lines of a PQR-file:

ATOM 1 N ASP A 9 26.776 2.259 -10.932 -0.3200 2.0000
ATOM 2 CA ASP A 9 28.247 2.418 -11.124 0.3300 2.0000
ATOM 3 C ASP A 9 28.655 3.886 -11.092 0.5500 1.7000
ATOM 4 O ASP A 9 29.550 4.269 -10.341 -0.5500 1.4000
...

It provides the following information in its columns:

1. line type, important are those starting with ATOM (or HETATM)

2. atom number

3. atom name

4. residue name

5. chain name

6. residue number

7. x-coordinate

8. y-coordinate

9. z-coordinate

10. charge (”Q”)

11. radius (”R”)

The pdb2pqr web service and software converts PDB files into PQR format. But some
problems can occur:

64

• Limited ligand support. Atom types which are not included in standard force fields are
currently not supported by pdb2pqr.

• Inability to ”repair” large regions of missing coordinates. Although pdb2pqr can fix
some missing heavy atoms in sidechains, it does not currently have the (non-trivial) ca-
pability to model in large regions of missing backbone or sidechain coordinates.

pdb2pqr will also perform hydrogen bond optimization, sidechain rotamer search, limited
titration state assignment, and apbs input file preparation.

The program can be used at the command line (use a terminal window, called ”konsole”):

pdb2pqr.py --ff=parse --apbs-input --chain model.pdb model.pqr

See the documentation for details 1 (local copy). 2.

Task 1: Copy the PDB file of the complex of FNR with ferredoxin and NADP in the productive
position (model.pdb) to your working directory. You generated this file in the last practical.
Ensure, that you used PDB Code 1ewy and 2bsa for building the model. Otherwise, correct it
before continuing. Run pdb2pqr. What is the meaning of each option of the program? What
is the difference between the input PDB-File and the output PQR-File (e.g. using tkdiff
and/or vmd)? Give at least 4 fundamental differences (not single added/removed atom).

The program tkdiff highlights differences between similar files. It can be used with the
following command line:

tkdiff model.pdb model.pqr

You also may look at the files with vmd (see last practical!). Remark: Open the PQR-
files as PDB because vmd fails to read the PQR format of pdb2pqr! (File -- New
molecule... in the VMD Main window, choose Determine file type -- PDB).
Alternatively, you can read the file when you start vmd:

vmd -pdb model.pqr

If you have a look at the PQR-file, you realize that it does not contain the iron sulfur center.
pdb2pqr has problems to handle such metal clusters, because the metals are coordinated by
protein residues which therefore also have changed charges. Such changes will now be done by
hand.

We calculated these charges for the oxidized form (Fe(III)-Fe(III)) for you using density
functional theory:

Total Charge: -2
Atom Residue Charge Radius
FE1 FES 0.600 1.25

1http://www.poissonboltzmann.org/pdb2pqr/user-guide/using-pdb2pqr
2http://www.bisb.uni-bayreuth.de/People/essigke/pract/pdb2pqr userguide.html

65

http://www.poissonboltzmann.org/pdb2pqr/user-guide/using-pdb2pqr
http://www.bisb.uni-bayreuth.de/People/essigke/pract/pdb2pqr_userguide.html

FE2 FES 0.600 1.25
S1 FES -0.600 1.85
S2 FES -0.600 1.85

CB CYS 0.050 2.00
SG CYS -0.550 1.85
HB3 CYS 0.000 0.00
HB2 CYS 0.000 0.00

Warning: It is expected that you understand what you are doing! The description will be less
and less detailed and you have to transfer your knowlege from the steps you did before! Do not
continue, if you get an error message. Try to understand what the error message means and try
to solve the problem. Check every step! If you create a file, look if it exists (ls -rtl, for the
options man ls) and check the content (less filename, see man less how to use it).
You may revisit the Unix tutorial of day 1, e.g. how redirections and pipes work.

Edit a copy of the PQR-file to incorporate the iron sulfur cluster. To do this:

• Make a copy of your PQR-file

cp model.pqr model_task2.pqr

• Copy the coordinates of the iron sulfur cluster from the model.pdb into your new file.
Therefore, get the coordinates from the modeled complex, for instance using the Unix
command:

grep FES model.pdb | grep -v LINK >> model_task2.pqr

Task 2: Explain what the line above does. If you do not know, search the man-page and the
Unix tutorial for answers!

• Try to recall the coordination of the iron-sulfur cluster which you studied in the last
practical. Work only on the cysteines which coordinate the iron-sulfur cluster!

• Open model task2.pqr in an ASCII text editor, e.g. kwrite or nedit (NOT
openoffice!).

• Delete the thiol hydrogens of the four coordinating cysteines.

• Add the charges and radii of the iron sulfur cluster in the PQR-file. Correct the charges
of the cysteine atoms. Take the values from the table above. Check with

grep FES model_task2.pqr

that all atoms of the iron-sulfur cluster have proper charges and radii. Check with

66

grep "CYS C" model_task2.pqr | grep -E "CB|SG|HB2|HB3"

that all coordinating cysteines have proper charges and radii. grep -E allows to use
regular expressions. The symbol "|" in "CB|SG|HB2|HB3" is a logical "or". It
selects the line if one of the four alternative atom names is given in the current line.

• Delete all water molecules from your input by using the Unix command

grep -v HOH model_task2.pqr | grep -v REMARK > model-mod.pqr

• Compare model-mod.pqr with model.pqr using tkdiff. Make sure you find all
changes you intended to make, and no unintended changes.

• Check the total charge to be a realistic integer (-1000 is not realistic!). The following
command adds up the charge column of your PQR-file:

grep -E ˆ"ATOM|HETATM" model-mod.pqr | \
awk ’ BEGIN {charge = 0} {charge+= $10} END {print charge}’

The program grep is used to select lines containing ATOM or HETATM at the beginning
of a line (’ˆ ’). These lines are piped into a script in the language awk to sum up the 10th
column ($10). Before the first line is processed, the variable charge is set to zero, the
variable is incremented for each line by the value of the 10th column and after the last line
the value of the variable is printed as output. Awk may do rounding mistakes. Therefore
the last digit of the result can be ignored. If your result is not a reasonable integer, check
your changes again!

• You may have realized that FAD and NADP are missing in the PQR file, since pdb2pqr
can not not deal with them. You can download a PQR file here. 3. Add these molecules
to you PQR file. You can do that for instance by using the program "cat". Call the
resulting file complex.pqr.

• Check again that everything is correct!

Task 3: What is the total charge of FAD, NADP and the complex? In case of FAD and NADP:
on which groups are the charges formally located?

In the following, we will compare the electrostatic potentials of the complex and of its
components. For this purpose, we need to generate several PQR-Files for:

• FNR alone with bound FAD. Get FNR with FAD from your generated PQR-file, for
instance by typing

grep -E ˆ".{21}A" complex.pqr > fnr.pqr
grep -E FAD complex.pqr >> fnr.pqr

3http://www.bisb.uni-bayreuth.de/People/essigke/pract/fad nap.pqr

67

http://www.bisb.uni-bayreuth.de/People/essigke/pract/fad_nap.pqr

• Ferredoxin, get the PQR-file by using

grep -E ˆ".{21}C" complex.pqr > fd.pqr

• FNR alone with bound FAD and NADP using similar commands (target file fnr-nap.pqr).

Do the molecules have the charge which you would expect?
It is very important that you are using a consistent naming scheme of your files. Otherwise

you will be confused very fast. For example use the following filenames:

Task PQR-File apbs input apbs output DX-File isosurface surface potential
4 fd.pqr fd.in fd.out fd.dx
5 fd-iso.tga
6 fd-surf.tga
7 fd.pqr fd-salt.in fd-salt.out fd-salt.dx fd-iso-salt.tga fd-surf-salt.tga
8 fnr.pqr fnr-salt.in fnr-salt.out fnr-salt.dx fnr-surf-salt.tga

fnr-nap.pqr fnr-nap-salt.in fnr-nap-salt.out fnr-nap-salt.dx fnr-nap-surf-salt.tga
complex.pqr complex-salt.in complex-salt.out complex-salt.dx complex-surf-salt.tga

5.2 Running the Electrostatics Calculation
You are now almost ready for electrostatics calculations.

Have a look at the apbs input file that you have created with pdb2pqr. Try to understand
what is written there using the apbs documentation.

The input file is structured as follows

• First apbs reads in the PQR-file.

• Then apbs does the electrostatic calculation. The apbs input files generated by pdb2pqr
solves the PBE twice in order to calculate the solvation energy of a protein, once with a in-
homogeneous dielectric constant (protein and solvent have different dielectric constants)
and once with a homogeneous dielectric constant (protein and solvent have the same di-
electric constant). For visualizing the electrostatic potential of the protein, one only needs
to solve the PBE once for the inhomogeneous medium. Thus, you can delete the second
part.

• In the end, the solvation energy is calculated. This part should also be deleted.

• Note, the OpenDX file containing the electrostatic potential is written out in the first
calculation, i.e. with the inhomogeneous dielectric constant. Give the potential file the
same name as your PQR-file to make it easier to associate them.

Task 4: Describe in your protocol the meaning of ”pdie” and ”sdie” using the apbs docu-
mentation 4. Which value is set for the solvent radius? What does this radius mean? Which
consequence would have a decrease of this value?

68

http://www.poissonboltzmann.org/apbs/user-guide
http://www.poissonboltzmann.org/apbs/user-guide
http://www.poissonboltzmann.org/apbs/user-guide

Calculate the electrostatic potential of ferredoxin (you need to edit your apbs-input file). Set
the protein dielectric constant to 4.0. Give the tabulated name to the OpenDX file that will be
generated. Make sure that the PQR-file does not include any water molecules.

Run apbs by typing
apbs your-apbs-input-file.in > your-apbs-output-file.out
in the console. The electrostatic calculation will take a moment...
After the calculation is finished (check the .out-file!), you have a DX-file in your directory

containing the electrostatic potential.

5.3 Visualization of the Electrostatic Potential of a Biomolecule
vmd can be used to visualize the electrostatic potential. Load the PQR- and DX-file of ferre-
doxin into vmd.

Again: Open the PQR-files as PDB because vmd fails to read the PQR format of
pdb2pqr!

Choose (File -- New molecule... in the VMD Mainwindow and choose Determine
file type -- PDB). Adjust the molecule to the desired view. Now select the molecule in
the VMD Main window and load the DX-file into the molecule (by File -- Load Data
Into Molecule). Do not be surprised, nothing will have changed for the moment.

Alternatively, you can read the file when you start vmd:

vmd -pdb fd.pqr -dx fd.dx

5.3.1 Isocontour Surfaces
One of the most popular visualization methods is the isocontour surface.

1. First, choose Graphics -- Representations from the VMD Main window.

2. Create a useful representation, e.g. cartoon.

3. Hit the Create Rep button and change Drawing Method to Isosurface. The
box shows the size of the grid on which the PBE is solved.

4. Change Draw from Points to Solid Surface.

5. Change the Isovalue to 3 RT/e (1 RT (298 K) = 2.4789 kJ/mol = 0.5925 kcal/mol,
e = 1.6022 · 10−19C). Don’t forget to press Enter/Return after entering the number!

6. To continue the longstanding tradition of electrostatic potential coloring, choose ColorID
0 for the Coloring Method (positive potentials are colored blue, and negative poten-
tials are colored red).

7. For the negative isocontour, hit Create Rep and select the newly created representa-
tion. Change the isocontour value to -3 RT/e and the ColorID to 1.

8. Change Show from Box + Isosurface to Isosurface to get rid of the frame.

69

At this point, you probably have an image that looks something like this:

Task 5: Make a figure of ferredoxin showing the positive and negative potential with the iso-
contour surfaces of -3 RT/e and 3 RT/e and include it in your protocol (white background can
be used to save ink). Pay attention that the information you want to convey with the picture
is really given (orientation of the molecule, size of the molecule). Why are there holes in the
contour (at -3 RT/e, it might be helpful to show the box again)?

5.3.2 Surface Electrostatic Potential
Another popular visualization of electrostatic potentials is to map them to the biomolecular
surface. Before proceeding, you may want to delete the two isocontours you just created using
the Delete Rep button in the Graphical Representations window or hide them by
double-clicking the representation name in the Graphical Representations window.

1. Go to the Graphical Representations window
(Graphics -- Representations... from the VMD Main window) and create
a new representation of the molecule with the Create Rep button.

2. Go to the Draw style tab of the Graphical Representations window and
change Drawing Method to MSMS or Surf and Coloring Method to Volume.

3. Go to the Trajectory tab of the Graphical Representations window and
change the Color Scale Data Range to: -10 to 10 (RT/e).

4. Based on your version of vmd and your personal preferences, you have to possibility to
change the color scale for this image. Go to Graphics -- Colors... in the VMD
Main window and select the Color Scale tab from the new Color Controls

70

window. The traditional coloring scheme for electrostatics is ”RWB” (in the Method
menu). Be traditional with the coloring scheme!

Your molecule now probably looks somewhat like this:

Task 6: Include the picture in the protocol! A white background can help you to save ink or
toner.

5.3.3 Ionic Strength Dependence
Currently, the calculation of the electrostatic potential of ferredoxin is done without ions in the
solvent. In this section we want to analyze the effect of ionic strength.

Change the setting to have 0.1 M NaCl present in the solution (keyword ion in the elec-
statement). Set the ion radius to 2.0 Å. Use the documentation to find out how the settings need
to be changed. You need to include two lines, one for Na+ and one for Cl−. Give a new name
to the DX-file that you will generate (modify the line write pot dx ...)

Task 7: Make again two pictures with isocontours at +/- 3 RT/e and surface electrostatic po-
tential at +/- 10 RT/e. Use approximately the same orientation as in task 6 (use the coordinate
system in the left lower corner). Compare these picture to the picture obtained from the calcu-
lation without salt. What do you observe? Why?

5.3.4 Binding Interfaces
We want to characterize the binding interface of FNR.

Therefore, repeat the calculation with ionic strength for the three other structures you gen-
erated (FNR, FNR-NAP, complex). Make sure you use file names according to the table above
for all files!

71

Generate pictures with electrostatic potentials mapped to the surface for each structure, i.e.
complex, ferredoxin, FNR and FNR-NAP. In the figures of FNR, FNR-NAP and ferredoxin,
the binding surface should be well visible!

It is recommended, that you load all four structures (with PQR and DX file) into vmd at
once. You can switch between the molecules by selecting them in the main area of VMD Main
and choosing Molecule -- Toggle Displayed from the menu. You should not fix a
molecule Molecule -- Toggle Fixed to ensure that all rotation and translation opera-
tions are always done on all molecules (independent if they are currently visible or not).

Task 8: Include the four pictures in the protocol. What can you conclude about the interaction
of the FNR with ferredoxin? What can you say about the NADP binding site (with and without
NADP bound)?

72

	UNIX Tutorial for Beginners
	Typographical conventions
	UNIX Introduction
	The UNIX operating system
	Files and Processes
	The Directory Structure
	Graphical Desktop Environment
	Web Browser

	UNIX – Files and Directories
	Listing files and directories
	Making Directories
	Changing to a different directory
	The directories . and ..
	Pathnames
	Efficient working with the mouse and coursers
	Summary

	Copy, Move and other File Handlings
	Copying Files — cp (copy)
	Moving files — mv (move)
	 Removing files and directories — rm (remove), rmdir (remove directory)
	 Removing files and directories
	Searching the contents of a file
	Dealing with a PDB file
	Summary

	Redirecting and Piping
	Redirection
	Redirecting the Output
	Redirecting the Input
	Pipes
	Again dealing with a PDB file
	Summary

	Wildcards and Help
	The characters * and ?
	Filename conventions
	Getting Help
	Summary

	File Permissions and Process Handeling
	File system security (access rights)
	Changing access rights
	Processes and Jobs
	Backgrounding a current foreground process
	Listing suspended and background processes
	Running Graphical Processesin the Background
	Killing a process
	Summary

	Some More Useful Commands
	Compiling UNIX software packages
	Downloading source code
	Extracting the source code
	Configuring and creating the Makefile
	Building the package
	Running the software

	Variables and General Settings
	UNIX Variables
	Environment Variables
	Shell Variables
	Using and setting variables
	Setting shell variables in the .cshrc file
	Setting the path

	Editors
	Webpages

	Sequences and Databases
	Find ORFs in the Sequence
	Annotation of Protein Sequences
	Using Sequences to Find Structures
	Getting Information on Literature, Downloading Papers
	Kegg und Brenda
	Search with Chemical Structures

	Sequence Alignments
	Ferredoxin-NADP(H)-reductase
	Dot-Plots and Pairwise Sequence Alignments
	Multiple Sequence Alignment for Ferredoxin and FNR

	Protein Structure Visualization
	How to use vmd
	The complex of ferredoxin:NADP+ reductase with ferredoxin
	Analysis of the complex of FNR with NADP
	Model of the Ternary Complex of FNR, Ferredoxin and NADP
	Preparation of a Figure of the Ternary Complex

	Continuum Electrostatics
	Structure Preparation
	Running the Electrostatics Calculation
	Visualization of the Electrostatic Potential of a Biomolecule
	Isocontour Surfaces
	Surface Electrostatic Potential
	Ionic Strength Dependence
	Binding Interfaces

