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Three thermodynamically meaningful pKa values can be defined for polyprotic acids: macroscopic, microscopic,
and quasisite pKa values. In this paper, the relation between these pKa values and their relation to titration
curves is discussed. Often inflection points of total and individual titration curves or the pH value where the
proton binding site is half protonated, so-called pK1/2 values, are used to identify the pKa values of polyprotic
acids or of a proton binding site within the polyprotic acids. However, both are generally not identical with
the pKa values of a polyprotic acid. The different thermodynamic definitions of pKa values are compared to
commonly used ways of obtaining pKa values from titration curves. The inflection points and pK1/2 values are
a first good guess for further fitting. However, only fitting titration curves to proper thermodynamic expressions
lead to the respective pKa values that are associated with the reaction free energy. A polyprotic acid withN
titratable groups has 2N microstates and thus 2N - 1 independent microscopic constants. However, only
N2 - N + 1 parameters can be extracted from the titration curves of all individual sites. Because 2N - 1 is
greater thanN2 - N + 1 for N > 3, it follows that it is impossible to obtain all microscopic constants from
the titration curves of all individual sites for polyprotic acids with more than three nonidentical proton binding
sites. ForN e 3, it is explained how to obtain the microscopic constants from the titration curves of all
individual sites using the decoupled sites representation. The method is applied to determine the microscopic
constants of DTPA, which has highly irregular titration curves. From the microscopic constants, the state
populations are calculated and the reason for the unusually shaped titration curve is explained.

Introduction

Proton binding is a very common and simple chemical
reactions. The protonation of a molecule controls its charge and
thus greatly influences the physical and chemical properties of
the molecule. Understanding protonation equilibria is therefore
crucial for understanding the chemistry and the reactivity of
molecules.

The proton binding equilibrium is usually characterized by a
pKa value, which is directly proportional to the standard free
energy of the protonation reaction. It is a common practice to
use either the inflection point of titration curve or the pH at
which the protonation probability is 0.5 (the so-called pK1/2

value) to obtain the pKa value. However, neither the inflection
point nor the pK1/2 value are definitions of the pKa value. Just
the character of the titration curve of monoprotic acids leads to
the property that the pKa value, the inflection point, and the
pK1/2 value all coincide. In contrast to the titration of monoprotic
acids, the titration of polyprotic acids is usually more compli-
cated because of the interaction between the protons bound to
the different binding sites and because of the binding statistics.
The inflection points and the pK1/2 values of the titration curve
coincide with pKa values of polyprotic acids only under special
circumstances. The complications that occur in polyprotic acids
and the binding of several ligands to the same molecule in
general are reviewed in several papers and books.1-7 Recently,
we could show that every total titration curve of a polyprotic
acids withN sites can be described as a sumN noninteracting,
so-called quasisites. The titration curves of the individual sites

are just a linear combination of the titration curves of these
quasisites.8 The formalism to describe this relationship is called
decoupled sites representation (DSR).

For polyprotic acids, one can define three different equilib-
rium constants: macroscopic, microscopic, and quasisite con-
stants. This paper will discuss these different equilibrium
constants and clarify the relation between them. Furthermore it
will be explained how and under which circumstances the
equilibrium constants can be obtained from titration curves. The
effect of the ionic strength on the different equilibrium constants
is not considered explicitely. It is assumed that the ionic strength
does not change during the titrations.

The paper has the following structure. First, the basic
principles of the titration of monoprotic acids are summarized.
Next, diprotic acids are discussed in detail, because many
principles of polyprotic acids can be understood from diprotic
acids already. For diprotic acids, it is also investigated when
pK1/2 values and inflection points of titration curves are good
approximations for pKa values. The description is then general-
ized to polyprotic acids. A simple way to obtain microscopic
equilibrium constants of di- and triprotic acids from the DSR
by using simple linear fits of titration curves of individual sites
is described. From the DSR, it follows that it is impossible to
determine all microscopic equilibrium constants from the
titration curves of the individual sites for molecules with more
than three nonidentical binding sites, because the titration curves
of individual sites do not contain enough information. The DSR
formalism is applied to obtain the microscopic constants for
diethylenetriaminepentaacetate (DTPA) which possesses a
highly irregular titration curve. The physical basis of these
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irregular titration curves can be understood from the microscopic
equilibrium constants. In the end, the main conclusions of the
paper are summarized.

Titration of a Monoprotic Acid

The protonation equilibrium of a monoprotic acid can be
described by eq 1

whereKa is the equilibrium constant and [A-], [HA], and [H+]
represent the concentration of the deprotonated species, the
protonated, and the protons, respectively. The pH of the solution
and the pKa of an acid are defined as the negative decimal
logarithm of the proton concentration (pH) -log [H+]) and
the Ka value (pKa ) -log Ka), respectively. Using these
definitions, one obtains the Henderson-Hasselbalch equation
from eq 1. The protonation probability〈x〉 of a protonatable
group is given by eq 2 which is algebraically equivalent to the
Henderson-Hasselbalch equation withλ ) 10-pH:

This equation describes a standard sigmoidal titration curve that
is commonly found in text books. The denominator of eq 2
corresponds to the partition function of the molecular system,
which becomes zero whenKa ) -λ. By rearranging eq 2, it is
possible to calculate the pKa value from the protonation
probability. From eq 2, one can see that the protonation
probability is 0.5, when the pH equals the pKa value. Further-
more, the pKa value also coincides with the inflection point of
the titration curve, i.e., the pH at which the titration curve has
the steepest slope. At the inflection point, the second derivative
of eq 2 becomes zero, which is exactly the case when pH value
equals the pKa value (see the Supporting Information).

For a monoprotic acid, the inflection point of the titration
curve and the pK1/2 value all coincide with the thermodynami-
cally defined pKa value. The pKa value is defined from the mass
law in eq 1 and has a clear relation to the standard reaction
free energy (standard conditions, pH)0) for protonating a group,
which is given byGa

0 ) -â-1 ln 10 pKa, where â is the
reciprocal of the product of the universal gas constant and the
temperature. The energy for protonating a group at a certain
pH is given byGa ) Ga

0 - µH+ ) -â-1 ln 10 (pKa - pH),
whereµH+ is the chemical potential of the protons in the solution.

Titration of a Diprotic Acid

Thermodynamics and Titration Curves. The behavior of
a diprotic acid will be described in detail for illustrating and
summarizing the concepts required for polyprotic acids. Given
is a system of two interacting proton binding sites. Such a system
can adopt four states that are described by a protonation state
vector x, where the componentsxi mark whether sitei is
protonated (xi ) 1) or deprotonated (xi ) 0). For a system of
two sites, one has the following states: both sites deprotonated
(00), only the first site protonated (10), only the second site
protonated (01), and both sites protonated (11; see Figure 1a).
One can assign microscopic equilibrium constantsKr

p to all
four equilibria in this reaction scheme, where the subscriptr
denotes the protonation state vector of the reactant state and
the superscriptp denotes the protonation state vector of the
product state. The microscopic equilibrium constants in eq 3

are defined analogously to the equilibrium constants for
monoprotic acids in eq 1:

The microscopic pKr
p values are defined as the negative

decimal logarithm of the microscopic equilibrium constants
Kr

p (pKr
p ) -log Kr

p), which are connected to the free energy
difference of the relevant microstatesGp

0 - Gr
0 ) -â-1

HA y\z
Ka

A- + H+; Ka ) [A-][H+]
[HA] (1)

〈x〉 ) 10pKa-pH

1 + 10pKa-pH
)

Ka
-1λ

1 + Ka
-1λ

(2)

Figure 1. Titration of a diprotic acid having the microscopic values
pK00

10 ) 7.0 and pK00
01 ) 7.1 and an interaction energy ofW ) 2.0 pKa

units. The quasisite pK′j values of this system are 4.74 and 7.35, which
are due to the strong interaction numerically identical with the
macroscopic pKh k values. Thea11 parameter of the system is 0.56. The
other entries of theaij matrix can be obtained from eq 16. (a) Schematic
representation of the equilibria between the different microspecies of
the system. The protonation state vectorx is given below the states.
(b) Population of the microspecies. The protonation state vectorx marks
the population curves. (c) Total titration curve (solid line), titration
curves of the individual sites (dashed lines) and quasisite titration curves
(dotted lines).

K11
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[(11)]
; K11
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00 )
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ln 10 pKr
p at standard conditions, i.e., pH) 0. Because the

energy of the states must be independent from the way to reach
the state, the following relation must hold pK11

01 + pK01
00 )

pK11
10 + pK10

00. Therefore, one can define an interaction energy
W between the sites asW ) pK10

00 - pK11
01 ) pK01

00 - pK11
10. With

this definition,Wshould be positive; that is, binding of the first
proton should disfavor the binding of the second because of
electrostatic repulsion. Because protons should repel each other
because of their charge, only repulsion (positive interaction
energyW) is considered here. Negative interaction energies
would correspond to an attraction and lead to cooperative
binding which will be discussed in a separate publication
(Onufriev & Ullmann, in preparation). It should be noted that
the formalism described here also applies for cooperative
binding. The three parameters pK01

00, pK10
00, andW characterize

the energetics of the binding of two ligands to a molecule
completely. The totally deprotonated state is set to be the
reference state (G00

0 ) 0). The partition functionZ in terms of
microscopic pKr

p values and in terms of the energyGx
0 of the

protonation statesx is then given by eq 4

whereµH+ is the chemical potential of the protons which is given
by â-1 ln 10 pH. One should note that-âG11

0 /ln 10 ) pK10
00 +

pK11
10 ) pK01

00 + pK11
01 ) pK01

00 + pK10
00 - W. The population of

each of the states can be calculated from eq 5

The pH dependence of the population of the four microscopic
states is depicted in Figure 1b.

The total average protonation〈X〉 of a molecule is given by
the sum of the probability of each state multiplied by the number
of protons bound in this state:〈X〉 ) 〈(10)〉 + 〈(01)〉 + 2 〈(11)〉.
The total protonation is measured by techniques that look at
the system as a whole such as for instance potentiometry or
calorimetry. Such measurements are usually interpreted in terms
of macroscopic pKa values: pKhk. Macroscopic constant describes
the equilibrium between thekth and the (k - 1)th macrostate
of the molecule, not the equilibrium for individual sites or
between microstates of the molecule. For a system with two
binding sites, the macroscopic equilibrium constantsKh 1 andKh 2

in terms of microstate population and in terms of microscopic
equilibrium constants are given by eq 6

The macroscopic pKh k values are given as the negative decimal
logarithm of the equilibrium constants (pKh k ) -log Kh k). The
partition function in eq 4 can be rewritten in terms of
macroscopic equilibrium constants as given by eq 7

The values of pKh1 and pKh2 are obtained by fitting experimentally
obtained macroscopic titration curves to eq 8

The titration curve of an individual site gives the probability
that this site in the molecule is protonated at a given pH. They
are therefore obtained by summing the probabilities of all states
in which the site of interest is protonated, i.e., for a diprotic
acid by〈x1〉 ) 〈(10)〉 + 〈(11)〉 and〈x2〉 ) 〈(01)〉 + 〈(11)〉 using
eq 5. The titration curve of an individual site does not represent
a microscopic titration curve but rather a sum of the population
curves of all of the microstates that have this site protonated.
Titration curves of individual sites of a molecule with two
interacting sites are given in Figure 1c. Individual titration curves
are measured by techniques that enable us to monitor the
protonation of a particular site, such as for instance nuclear
magnetic resonance (NMR).9-16

It is always possible to describe macroscopic titration curves
in terms of the titration curves of noninteracting (decoupled)
quasisites.2,8,17,18The quasisites are generally not identical with
a particular proton binding site in the molecule. Usually many
real sites of the molecule contribute to one quasisite. The pKa

values of these quasisites (pK′j) are obtained as negative of the
decimal logarithm of the negative of the roots of the partition
function Z (eqs 4 and 7), whereλ ) 10-pH is the variable of
the polynomial from which the roots are determined. The
quasisite pK′j values have a clear connection to the energetics
of binding one proton to one quasisite:∆Gj

0′ ) -â-1 ln 10
pK′j. Analogously to a real protonation state vectorx, it is
possible to define a quasisite protonation state vectory where
yj is 1 or 0 depending whether quasisitej is protonated or not.
The partition function written in terms of the pK′j values of the
decoupled quasisites and in terms of the energiesG y

0 of the
quasistatesy is given by eq 9

whereG y
0 ) y1 ∆G1

0′ + y2 ∆G2
0′. The partition functions in eqs

4, 7, and 9 are all fully equivalent and describe the same system.
The partition function in eq 9 does, however, not contain an
interaction termW in contrast to eq 4, because the quasisites
do not interact. The DSR is still a microscopic representation;
that is, one can still in principle differentiate between two states
that have only a single proton bound.

We could demonstrate recently8 that individual titration curves
are just a linear combination of the two quasisite titration curves
(eq 10)

where aij represent parameters that indicate how much the
quasisite titration curve contributes to the individual titration
curves. Because each real and also each quasisite can only bind
one proton, one can introduce the following constrainta11 +

Z ) 1 + 10pK01
00-pH + 10pK10

00-pH + 10pK01
00+pK10

00-W-2pH

) 1 + e-â(G01
0 -µH+) + e-â(G10

0 -µH+) + e-â(G11
0 -2µH+) (4)

〈(00)〉 ) 1
Z

; 〈(10)〉 ) 1
Z

10pK10
00-pH

〈(01)〉 ) 1
Z

10pK01
00-pH; 〈(11)〉 ) 1

Z
10pK01

00+pK10
00-W-2pH (5)

Kh 1 )
[(00)][H]

[(10)] + [(10)]
)

K10
00K01

00

K10
00 + K01

00

Kh 2 )
([(10)] + [(10)])[H]

[(11)]
) K11

10 + K11
01 (6)

Z ) 1 + 10pKh1-pH + 10pKh1+pKh2-2pH (7)

〈X〉 ) 10pKh1-pH + 2 × 10pKh1+pKh2-2pH

1 + 10pKh1-pH + 10pKh1+pKh2-2pH
(8)

Z ) 1 + 10pK′1-pH + 10pK′2-pH + 10pK′1+pK′2-2pH

) 1 + e-â(G 01
0 -µH+) + e-â(G 10

0 -µH+) + e-â(G 11
0 -2µH+) (9)

〈x1〉 ) a11
10pK′1-pH

1 + 10pK′1-pH
+ a12

10pK′2-pH

1 + 10pK′2-pH

〈x2〉 ) a21
10pK′1-pH

1 + 10pK′1-pH
+ a22

10pK′2-pH

1 + 10pK′2-pH
(10)
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a12 ) a21 + a22 ) a11 + a21 ) a12 + a22 ) 1.0. That means
that only one parameter in theaij matrix of a diprotic acids is
free. Theaij matrix can be obtained from a microscopic model
as outlined briefly below.

Relation between Titration Curves and pKa Values for
Diprotic Acids. Different ways of obtaining pKa values from
titration curves are used in practice. Here, the different,
definitions and their applicability are compared. Three different
thermodynamically meaningful pKa values can be defined for
polyprotic acids: microscopic pKr

p values, macroscopic pKh k

values, and quasisite pK′j values. Figure 2 shows a comparison
of these thermodynamically defined pKa values with the
inflection points and the pK1/2 values of a diprotic acid. The
microscopic values pK10

00 and pK01
00 of this diprotic acid are set

to 7.0 and 7.1, respectively. The interaction energy between
the two sites is used as a variable in Figure 2. The titration
behavior of such a diprotic acid with an interaction energy of
2.0 pKa units is depicted in Figure 1. The complications
described here occur when the two binding sites titrate in the
same pH range and interact. If the different proton binding sites
titrate at very different pH, these complications do not occur
even if there is a strong interaction. In the latter case, the site
that titrates first (at low pH) sees the nontitrating site only in
the protonated form. Then, when the second site titrates (at
higher pH), the first site is already virtually completely

deprotonated. When, however, both sites titrate in the same pH
range, they interact with each other in the protonated and the
deprotonated form during titration. This interaction causes
irregular titration curves.

Figure 2a shows the macroscopic pKh k values (the two dotted
lines), the microscopic pKr

p values (the four dot-dashed lines),
and the quasisite pK′j values (the two solid lines) as a function
of the interaction energy between the site. One can see that at
large interaction energies, the macroscopic pKh k values and the
quasisite pK′j values coincide. When the interaction energy is
zero, the microscopic pKr

p and the quasisite pK′j values are
identical. All of the pKa values in Figure 2a have a clearly
defined thermodynamic meaning.

NMR measurements can deliver individual titration curves.
In analogy to the titration of single protonatable groups, the
pH at which the protonation is 0.5, so-called pK1/2 value, is
often used to indicate the titration behavior. In Figure 2b, the
quasisite pK′j values (the two solid line) and pK1/2 value (the
two dot-dot-dashed lines) are shown. It is obvious that the pK1/2

values do not agree with quasisite pK′j values. From comparison
with Figure 2a, one sees that the pK1/2 values do also not agree
with the macroscopic pKh k values nor with the microscopic pKr

p

values, except when the sites do not interact. The pK1/2 value
cannot be used to describe the energetics of chemical reactions.

Also in analogy to the titration curves of monoprotic acids,
the inflection points of the titration curves of polyprotic acids
are sometimes used to estimate their pKa values. The total
titration curve of a molecule with two interacting has three
inflection points (Figure 2c), and the titration curves of the
individual sites have four inflection points (Figure 2d and e).
Some of these inflection points may be complex numbers,
depending on the interaction energy between the sites. In Figure
2c-e, only the real parts of the inflection points are shown as
a function of the interaction between the sites. The inflection
points are obtained by setting the second derivative of the total
and the individual titration curves to zero (see the Supporting
Information). Equations that relate the inflection points of two
interacting groups with identical pK10

00 and pK01
00 values to the

interaction energyW between them have been presented
before.22 However, also inflection points do not agree with
quasisite pK′j values, macroscopic pKh k values, or microscopic
pKr

p values of the system, except when the sites do not interact.
For large interaction energiesW, two of the inflection points,
the quasisite pK′j values and the macroscopic pKh k values, of
the system coincide numerically. For the case of two identical
strongly interacting sites, the equations for obtaining the
quasisite pK′j values take a simple mathematical form.22 One
can see that the inflection points of the total and the individual
titration curves do not coincide if the two interacting groups
are not identical, but approach each other for strong interaction
energiesW. The inflection points of neither the individual nor
the total titration curves do represent any physically meaningful
pKa value. They are, however, good estimates for finding a first
guess for fitting titration curves.

Using eq 2, it is possible after rearranging to calculate the
pKa value from the protonation probability. As one would
expect, the pKa value obtained this way does not depend on pH
for monoprotic acids. For a polyprotic acid, however, one
obtains then pH-dependent pKa values. Figure 4 shows such a
pH-dependent pKa value (solid lines) for a diprotic acid in
comparison to the macroscopic pKh k values and the quasisite pK′j
values (dashed lines, both are numerically identical for this
system) and to the microscopic pKr

p values (dotted lines).

Figure 2. Comparison of thermodynamically-defined pKa values with
pK1/2 values and inflection points of a diprotic acid in dependence on
the interaction energy between the binding sites in pH units. The
microscopic values pK10

00 and pK01
00 of this diprotic acid are set to 7.0

and 7.1, respectively. (a) Macroscopic pKh k values (dotted lines),
microscopic pKr

p (dot-dashed lines), and quasisite pK′j values (solid
lines) of a diprotic system in dependence on the interaction between
the sites. (b) Comparison quasisite pK′j values (solid lines) and pK1/2

values (dot-dot-dashed lines). (c) Comparison quasisite pK′j values (solid
lines) and inflection points of the total titration curve (dashed lines).
(d) comparison quasisite pK′j values (solid lines) and inflection points
of the titration curve of site 1 (dashed lines). (e) comparison quasisite
pK′j values (solid lines) and inflection points of the titration curve of
site 2 (dashed lines). The bifurcation points in the panels c, d, and e
mark the points where the inflection point get an imaginary part. Only
the real part of the inflection points is shown.
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When the two sites are nearly completely deprotonated or
protonated, the pH-dependent pKa value obtained from the
protonation probability converges to the microscopic pKr

p

values. In general, such pH-dependent pKa values do not
describe the energetics of the titration process properly and are
only a mean field approximation.19-21 The pH-dependent pKa

values describe the energy that is on average required to
protonate the group of interest at a given pH.

To obtain the macroscopic pKh k values for experimental
titration curves, eq 8 needs to be fitted to an experimentally
determined total titration curve. Microscopic pKr

p values can
be obtained by fitting the individual titration curves〈x1〉 )
〈(10)〉 + 〈(11)〉 and 〈x2〉 ) 〈(01)〉 + 〈(11)〉 using eq 5 or
alternatively from the DSR as explained below. Quasisites pK′j
values can then be obtained from the roots of the partition
function, which can be written either in terms of macroscopic
pKh k values (eq 7) or microscopic pKr

p values (eq 4). The
inflection points do not correspond to the macroscopic pKh k or
the quasisite pK′j values of the system. For small interaction
energiesW, the inflection point deviate considerably from
thermodynamically meaningful pKa values as can be seen in
Figure 3. Only for largeW, the inflection points and the

macroscopic pKh k or the quasisite pK′j values of the system
coincide. The inflection points of the titration curves and the
pK1/2 values are, however, good first guesses for the pKh k and
pK′j values that need to be refined in a fit.

Titration of Polyprotic Acids

Thermodynamics and Titration Curves. Most of the
statements made for diprotic acids hold for polyprotic acids with
more than two sites. In particular, it is also true that neither the
inflection points nor the so-called pK1/2 values describe the
energetics of proton titration, which is shown in more detail in
the Supporting Information.

In analogy to eq 3, one can define microscopic equilibrium
constants, and from these equilibrium constants, one can
calculate the energy of each protonation state. Each protonation
state can be represented by aN-dimensional protonation state
vectorx in which xi is 1 and 0 depending on whether sitei is
protonated or not. The standard free energyGx

0 of the protona-
tion statex is proportional to the sum of the microscopic pKr

p

values, that describes the equilibrium between the state of
interest and the reference state. The totally deprotonated state
is set to be the reference state, and its energy is set to zero. The
standard free energyG0111

0 of the state (0111) of a tertaprotic
acid is for instance given by- â-1 ln 10 (pK0001

0000 + pK0011
0001 +

pK0111
0011). Several different combinations of microscopic pKr

p

values are possible to calculate the energy of the same state.
The partition function of a polyprotic acid in terms of

microscopic constants is then given by eq 11

wherenx is the number of protons bound to the molecule in the
statex (nx ) ∑i)1

N xi) andµH+ is the chemical potential of the
protons which is given byâ-1 ln 10 pH, whereâ is the
reciprocal of the product of the universal gas constant and the
temperature. The sum in eq 11 ranges over all 2N possible
protonation states. The partition function is a polynomial where
eµH+ is the variable of the polynomial. Equation 11 is therefore
also called binding polynomial.18 The sum of the Boltzmann
factors e-âGx

0
of the statesx each havingnx proton bound give

the nxth coefficient of the polynomial. Several different states
can have the same numbernx of protons bound, but the protons
are distributed differently over the binding sites, for instance
in the case of the states (1001) and (1010). The probability that
a particular sitei is protonated in the molecule, i.e., the titration
curve of an individual site, is given by eq 12

The macroscopic pKh k values describe thei th protonation
equilibrium of the molecule as a whole. Thekth macroscopic
pKh k value is given by eq 13

Figure 3. Differences between the inflection points of the titration
curve and the quasisite pK′j values of a system of two interacting
identical sites having the microscopic binding constants pK00

10 )
pK00

01 ) 7.0 in dependence on the interactionW between the two sites.

Figure 4. pH-dependent pKa value of a diprotic acid having the
microscopic values pK00

10 ) 7.0 and pK00
01 ) 7.1 and an interaction

energy ofW ) 2.0 pKa-units calculated from pKa ) pH + log (〈xi〉/
(1 - 〈xi〉)) (solid lines) in comparison with the macroscopic pKh k values
(dashed lines) and the microscopic pKr

p (dotted lines). The macro-
scopic pKh k values and the quasisite pK′j values are numerically identical
for this system.

Z ) ∑
x

2N

e-âGx
0
eânxµH+ (11)

〈xi〉 )
1

Z
∑

x

2N

xi e-âGx
0
eânxµH+ (12)

pKh k ) -log(∑x

2N

δ(k - 1) e-âGx
0

∑
x

2N

δ(k) e-âG0x
0 ) (13)
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whereδ(k) is 1.0 if the statex hask protons bound (nx ) k)
and otherwise 0.0. A macroscopic pKh k value is therefore a
thermodynamic average over all equilibria connected to the
release of thekth proton. The sum of the first up to thekth
macroscopic pKh k value give thekth polynomial coefficient of
the partition function in eq 11. The macroscopic pKh k values
can consequently also be used to write the partition function
and total titration of polyprotic acids are commonly interpreted
in terms of macroscopic pKa values.

The titration of polyprotic acids can be described in terms of
decoupled quasisites.2,3,8,17,18The pK′j values of these quasisites
are obtained as negative of the decimal logarithm of the negative
of the roots of the partition functionZ in eq 11. The titration
curves of every individual site〈xi〉 in a polyprotic acid withN
proton binding sites can be expressed as a linear combination
of the N titration curves ofN independent quasisites〈yj〉8 as
shown in eq 14

or simpler in eq 15

Each of the quasisite titration curves〈yj〉 has a sigmoidal shape
as given by eq 2. Because each real and also each quasisite can
only bind one proton, the sum over all row and also the sum
over all columns in theaij matrix must be one8 (eq 16)

The coefficient matrix is obtained from the solution ofN sets
of N-dimensional systems of linear equations, which is explained
in more detail in Onufriev et al.8 Here, only a short version of
the derivation is given. Analogously to real protonation states,
one can define quasi-state vectorsy whereyj is 1 or 0 depending
if quasisitej is protonated or not. The standard free energy of
a microquasistateG y

0 in terms quasisite pK′j values is simply
given by eq 17

The average protonation of a quasisite is given by eq 18

The solutions of the systems of equations in eq 19 leads to the
aij matrix. There are a total ofN systems such as eq 19, one for
every i ) 1, ...,N

The factorsxi δ(n) andyj δ(n) filter out the states that haven
protons bound and that are protonated at sitei or at quasisitej,
respectively.

The description of individual titration curves of a molecule
in terms of quasisites is as general as the statistical mechanical
description provided in eq 12. Theaij matrix indicates how much
the jth quasisite pK′j value contributes to the total protonation
of the ith real site. Negative values in theaij matrix mark a
partial transfer of protons from the real sitei to other sites when
the jth quasisite gets protonated.

Binding Sites Combinatorics in Polyprotic Acids. A
molecule with N proton binding sites can exist inN + 1
macrostates (no proton bound, one proton bound, etc. up toN
protons bound) and 2N microstates. The numberpi of microstates
that havei protons bound is given by eq 20

The number of possible equilibrium constants between the states
having i and states having (i + 1) proton bound toN sites is
given by the number of states havingi protons bound times the
number of empty sites, which isN - i, because the protons
can only bind to the empty sites. The total number of possible
microscopic equilibrium constants is thusN2N-1. However, only
2N - 1 of these equilibrium constants are independent, because
one can calculate the microscopic equilibrium constants from
the difference between the free energies of the 2N microstates.
The energy of one state, the reference state, can be arbitrarily
set to zero. The number of macroscopic binding constants isN.

The DSR8 gives a complete description of the individual
titration curves. Each of the titration curves of individual sites
in a molecule withN binding sites can be described as a linear
combination of up toN quasisites titration curves. The coef-
ficientsaij of the linear combination form aN × N matrix. The
aij matrix contains (N - 1)2 independent parameters. The
number of quasisite pKa values isN. Therefore, all titration
curves of individual sites in a molecule can be described by
N + (N - 1)2 ) N2 - N + 1 parameters. Vice versa that means
that, even if all individual titration curves are measured, the
curves contain only the information forN2 - N + 1 parameters.

Table 1 lists the number of microconstants, the number of
independent microconstants, and the number of DSR parameters
required to describe all individual titration curves for molecules
with up to six proton binding sites. One can see that for
molecules with up to three proton binding sites the number of
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parameters that can describe individual titration curves and the
number of independent microconstants are identical. That means
one can determine the microscopic binding constants from the
titration curves of the individual sites for di- and triprotic acids.
For molecules with more than three proton binding sites, it is
not possible anymore to determine the microscopic binding
constants from the individual titration curves. For polyprotic
acids with N > 3, the number of microscopic equilibrium
constants exceeds the number of parameters that are required
to describe individual titration curves. For tetraprotic acid, it is
possible to extract 13 parameters from all individual titration
curves, but 15 independent microscopic pKr

p values are re-
quired to fully characterize the system. For more sites, this ratio
becomes even more unfavorable. Only for systems with sym-
metry or with special assumption, one can determine micro-
scopic equilibrium constants from titration curves of individual
sites of polyprotic acids with more than three nonidentical sites.
A fit of titration curves of individual sites to microscopic
equilibrium constants using eq 12 without special assumptions
is an over-fitting for polyprotic acids withN > 3. Even if the
titration curves of all individual proton binding sites are
measured with infinite precision, they can never contain the
information of all microscopic constants if the molecule has
more than three proton binding sites and no symmetry.

Obtaining Microscopic Equilibrium Constants from In-
dividual Titration Curves of Di- and Triprotic Acids. With
techniques such as NMR, it is possible to follow the titration
of a particular site in a polyprotic acids and thus to measure
individual titration curves.9-16 As outlined above, it is possible
to derive all microscopic constants from the individual titration
curves for di- and triprotic acids. For higher polyprotic acids,
it is only possible to obtain all microscopic constants if it is
possible to reduce the number of independent microscopic
constants toN2 - N + 1, i.e., to the number of DSR parameters
that are required to describe all individual titration curves. The
number of parameters can reduce if the molecule is symmetric
or if some microscopic constants can be assumed to be identical.
If this is possible, a scheme similar to the one outlined below
will allow to determine microscopic constants.

Using the DSR, one can derive from eq 19 that the
microscopic constants for a diprotic acid are given by eq 21

For a triprotic acid, similar equations can be derived, which
are however a bit more complicated. The equations for
microscopic constants of di- and triprotic acids are derived in
detail in the Supporting Information.

The advantage of using the DSR for obtaining microscopic
pKr

p values from experimentally measured titration curves is
that data obtained from different types of experiments can be
combined, and the fitting procedure is simple. Potentiometric
measurements deliver macroscopic constants and thus the
partition function in terms of these macroscopic constants. The
quasisite constants can be calculated from the roots of the
partition function. There areN macroscopic constants and also
N quasisite constants for a molecule withN proton binding sites.
The quasisite constants can be used in eq 14 to obtain theaij

matrix from titration curves of individual sites from alinear
fit. Additional constraints can be used in the fit, because the
sum over all rows and over all columns in theaij matrix must
be 1.0. For a diprotic acid, there is only one free parameter
available to fit the individual titration curves of both sites if
the macroscopic constants are already determined before. In the
case of triprotic acids, there are only four free parameters to fit
the individual titration curves of all three sites. Also for higher
polyprotic acids, one can apply the same procedure to obtain
the quasisite constants and theaij matrix. However, only with
special assumptions, it is possible to determine microscopic
constants from these parameters, because the number of
microscopic constants exceeds the number of parameters that
are required to describe individual titration curves.

Example: DTPA. Diethylenetriaminepentaacetate (DTPA)
is one of the simplest molecules that show a complex titration
behavior.10,23 This molecule, shown in Figure 5a, has three
amine nitrogens, and each of them can bind a proton. The
individual titration curves have been measured by NMR.10,23

The individual titration curves of the two terminal nitrogens
and the central nitrogens are given in Figure 5, parts b and c,
respectively. Because the molecule is symmetric, the two
terminal nitrogens cannot be distinguished and their individual
titration curves are identical. In a previous paper,8 we have
shown that the DSR model describes the individual titration
curves very well. The DSR parameters that describe the
individual titration curves are given in Table 2. The protonation
states vector marks the protonation of the left, the central, and
the right nitrogen. Using the DSR parameters in Table 2, we
obtain the microscopic pKr

p values which are listed in the same
table. The equations to obtain the microscopic pKr

p values are
obtained from eq 19 and are derived in detail in the Supporting
Information.

From the microscopic pKr
p values one can obtain the popu-

lation probabilities of the individual states in dependence on
pH. Figure 5b shows the population of all states that contribute
to the titration of the terminal nitrogens. Because the two
terminal nitrogens are identical, only the curves for the left
nitrogen is shown here. Figure 5c shows the population of all
states that contribute to the titration of the central nitrogens.
Adding up the curves of the population of the relevant states
leads to the individual titration curve of these sites, which are
also shown in Figure 5.

The titration curve of the central nitrogen is unusual because
of its nonmonotonic behavior. The protonation probability
increases with increasing pH (i.e., decreasing proton concentra-
tion). In theaij matrix, this unusual behavior is reflected by the
negative matrix elementa22 (see Table 2). This negative value

TABLE 1: Listing of the Number of Equilibrium Constants
and DSR Parameters for Molecules with up to Six Proton
Binding Sites

binding
sites

DSR-
parameters

independent
microscopic

constants
microscopic

constants

N N2 - N + 1 2N - 1 2N - 1N

1 1 1 1
2 3 3 4
3 7 7 12
4 13 15 32
5 21 31 80
6 31 63 192

pK10
00 ) log(a1110pK′1 + a1210pK′2)

pK01
00 ) log(a2110pK′1 + a2210pK′2)

pK11
10 ) log(a1110pK′1+pK′2 + a1210pK′1+pK′2

a1110pK′1 + a1210pK′2 )
pK11

01 ) log(a2110pK′1+pK′2 + a2210pK′1+pK′2

a2110pK′1 + a2210pK′2 ) (21)
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indicates that a proton is transferred from proton binding site 2
(central nitrogen) to other sites in the molecules when a proton
binds to the second quasisite.

The population of the microstates give a physical rational
for the unusual, irregular titration behavior of the central nitrogen
of DTPA. At high pH (low proton concentration), the protons
bind preferable to the central nitrogen, because the binding
affinity of a proton to the middle nitrogen is higher (see Table
2). Binding the second proton to one of the terminal nitrogens
while the middle nitrogen stays protonated is unfavorable,
because these two proton binding sites are in close proximity
and the positively charged protons repel each other. It is
therefore more favorable to deprotonate the central nitrogen
when the second proton proton binds and rather protonate both
terminal nitrogens. The two protons are at a greater distance
from each other and thus repel each other less, when the two
terminal nitrogens are protonated compared to protonating one
terminal and the central. The energetics of proton binding is
reflected in the microstate population in Figure 5 and in the
microscopic constants in Table 2.

Conclusions

The titration of polyprotic acids is considerably more
complicated than that of monoprotic acids. The titration curves
of individual sites in polyprotic acids can be irregular and do
not need to show a sigmoidal shape. Such irregular titration
curves can be obtained experimentally from NMR and infrared
spectroscopy or theoretically from titration curve calculations
using the Poisson-Boltzmann equation and thermodynamic
averaging. For irregular titration curves, the pK1/2 value, i.e.,
pH at which the protonation probability is 0.5, or the inflection
points of the titration curves of individual sites or of the total
titration curve cannot be identified with the pKa value. Only
real thermodynamically defined pKa values can be used to
describe the energetics of protonation reactions. Inflection points
and pK1/2 values are, however, good estimates for pKa values
and thus good starting values for fitting pKa values to titration
curves. Total titration curves can always be described as a sum
of the titration curves of noninteracting groups and therefore
do not give any information about the complexity of the
individual titration curves. More generally, titration curves
measured by every method that investigates the pH dependence
of the energetics of the system as a whole24-28 can be described
in terms of independent sites.

In polyprotic acids, one can differentiate between macro-
scopic, microscopic, and quasisite equilibrium constants. The
microscopic constants describe the binding equilibria between
the different binding states of a molecule, which consider all
interactions between the binding sites. They can be related to
macroscopic binding constants which describe how protons bind
to the molecule as a whole. From these macroscopic constants,
it is possible to obtain quasisite constants, i.e., microscopic
constants, which assume no interaction between the binding
sites. These quasisite constants cannot be related to particular
sites of the molecule. However, the titration curves of the
quasisites are related by a linear transformation to the titration
curves of the real sites. Quasisite constants are microscopic
constants but describe a decoupled system, i.e., a system without
interaction between the binding sites. The relation between the
different constants and the titration curves is graphically
summarized in Figure 6.

Figure 5. Titration of diethylenetriaminepentaacetate (DTPA). (a)
Schematic representation of the molecule. b) Titration curve of the
terminal left nitrogen measured by NMR10 (diamonds) and fitted to
the DSR (dashed line). The population curves of all microstates that
contribute to the titration of this site are shown and marked in the
diagram. The titration curves of the left and the right terminal nitrogen
are identical. (c) Titration curve of the central nitrogen measured by
NMR10 (squares) and fitted to the DSR (dashed line). The population
curves of all microstates that contribute to the titration of this site are
shown and marked in the diagram.

TABLE 2: Macroscopic pKh k Values, Quasisite pK′j and
Transformation aij Matrix (DSR parameters), and
Microscopic pKr

p Values of DTPAa

3. H+ 2. H+ 1. H+

Macroscopic pKh k Values
pKh 3 4.6 pKh 2 8.8 pKh 1 10.2

Quasisite pK′j Values
pK′3 4.6 pK′2 8.8 pK′1 10.2

aij Matrix
a13 0.13 a12 0.81 a11 0.06
a23 0.74 a22 -0.62 a21 0.88
a33 0.13 a32 0.81 a31 0.06

Microscopic pKr
p Values

pK111
110 4.3 pK110

010 8.9 pK100
000 9.2

pK111
101 5.3 pK110

100 8.0 pK010
000 10.1

pK111
011 4.3 pK011

010 8.9 pK001
000 9.2

pK011
001 8.0

pK101
100 9.7

pK101
001 9.7

a The macroscopic constants and the quasisite constants are numeri-
cally identical for this molecule because of the strong electrostatic
interaction.
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A polyprotic acid with N proton binding sites hasN2N-1

microscopic equilibrium constants, of which only 2N - 1 are
independent. However, onlyN2 - N + 1 parameters can be
extracted from the titration curves of all individual sites.
Therefore, the titration curves of individual sites cannot reflect
all microscopic equilibria for polyprotic acids with more than
three nonidentical proton binding sites. Hence, it is impossible
to determine all microscopic equilibrium constants for molecules
with more than three nonidentical sites from the titration curves
of the individual sites, even if they are measured with infinite
precision. For di- and triprotic acids, it is possible to get
microscopic constants from the individual titration curves. For
polyprotic acids withN > 3, additional information or special
assumptions are required.

The whole formalism can be used to describe the binding of
multiple ligands in general and is not restricted to protons. For
example, binding of magnesium ions to nucleic acids or of zinc
or calcium to proteins are another potential application. The
decoupled sites representation is also applicable to the binding
of regulatory proteins to DNA or the binding of ligands to
oligomeric enzymes.
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Figure 6. Graphical summary of the relation between macroscopic
pKh k values, microscopic pKr

p values, and quassi-site pK′j values and of
these constants to experimentally determined titration curves. Some of
the arrows point only in one direction which indicates that these steps
are only possible in one direction.
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