Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase

Matthias Bolla Oliver Einsleb Ulrich Ermlerc Peter M.H. Kroneckd G. Matthias Ullmanne

aFakultät für Biologie/Mikrobiologie and bLehrstuhl Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, cMax-Planck-Institut für Biophysik, Frankfurt, dFachbereich Biologie, Universität Konstanz, Konstanz, and eComputational Biochemistry, Universität Bayreuth, Bayreuth, Germany

\textbf{Key Words} \\
Acetylene hydratase · Benzoyl-coenzyme A reductase · Tungsten enzymes

\textbf{Abstract} \\
In biology, tungsten (W) is exclusively found in microbial enzymes bound to a bis-pyranopterin cofactor (bis-WPT). Previously known W enzymes catalyze redox oxo/hydroxyl transfer reactions by directly coordinating their substrates or products to the metal. They comprise the W-containing formate/formylmethanofuran dehydrogenases belonging to the dimethyl sulfoxide reductase (DMSOR) family and the aldehyde:ferredoxin oxidoreductase (AOR) families, which form a separate enzyme family within the Mo/W enzymes. In the last decade, initial insights into the structure and function of two unprecedented W enzymes were obtained: the acetaldehyde forming acetylene hydratase (ACH) belongs to the DMSOR and the class II benzoyl-coenzyme A (CoA) reductase (BCR) to the AOR family. The latter catalyzes the reductive deearomatization of benzoyl-CoA to a cyclic diene. Both are key enzymes in the degradation of acetylene (ACH) or aromatic compounds (BCR) in strictly anaerobic bacteria. They are unusual in either catalyzing a nonredox reaction (ACH) or a redox reaction without coordinating the substrate or product to the metal (BCR). In organic chemical synthesis, analogous reactions require totally nonphysiological conditions depending on Hg2+ (acetylene hydration) or alkali metals (benzene ring reduction). The structural insights obtained pave the way for biological or biomimetic approaches to basic reactions in organic chemistry.

\textbf{Introduction} \\
With the exception of nitrogenases, the group of Mo and W enzymes are widely distributed in all domains of life and catalyze a large variety of oxo- or hydroxyl-group transfer reactions, thereby mostly acting as oxidoreductases. All of them bind the transition metal via one or two pyranopterins with or without a linkage to nucleotides, and are referred as mono- or bis-molybdopterin (MPT)/tungstopterin (WPT). Depending on the nature of the cofactor, the additional proteinogenic or inorganic ligands at the metal and the overall amino-acid sequence similarities, four different Mo/W enzyme families are distinguished: the xanthine oxidase (XO), sulfite oxidase (SO), dimethyl sulfoxide reductase (DMSOR) and aldehyde:ferredoxin oxidoreductase (AOR) families. In mem-
bers of the XO and SO families, the transition metal is coordinated by the dithiolene group of a single pyranopterin and varying inorganic S/O atoms or a cysteine (SO family). In the DMSOR and AOR families, the Mo/W atoms are always coordinated by four dithiolene sulfur atoms of the bis-MPT/WPT cofactors and a large variety of proteinogenic or inorganic ligands (fig. 1). For recent general reviews of Mo/W enzymes see previously published studies [Bevers et al., 2009; Hille, 2013; Hille et al., 2014; Pushie et al., 2014; Romao, 2009; Schwarz et al., 2009].

In most cases, Mo/W enzymes have a preference for either of the respective transition metals [Andreesen and Makdessi, 2008; L’vov et al., 2002; Pushie et al., 2014; Rothery and Weiner, 2015]. However, there are also reports on the presence/exchange of both metals in formate dehydrogenases (FDHs) [Hartmann et al., 2014]. The XO and SO family members exclusively contain Mo. The DMSOR family mainly comprises Mo enzymes, but a few members prefer W over Mo: (a) FDHs from some obligately anaerobic microorganisms [Hartmann et al., 2014]; (b) formylmethanofuran dehydrogenases from various methanogenic archaea [Vorholt and Thauer, 2002], and (c) acetylene hydratase (ACH) from strictly anaerobic bacteria [Seiffert et al., 2007; Ten Brink, 2014]; in the AOR family, exclusively W enzymes have been found and include (d) AORs from hyperthermophilic archaea and mesophilic bacteria with varying specificities for their respective aldehyde substrate [Kletzin and Adams, 1996; Roy and Adams, 2002], and (e) the recently identified class II benzoyl-CoA reductases (BCRs) from strictly anaerobic bacteria [Boll et al., 2014]. With the exception of ACH, all currently known W enzymes catalyze redox reactions at very low standard redox potentials with E° values of -430 mV (FDHs), -560 to -610 mV (AORs) and -622 mV (BCRs; fig. 2). This property is in line with the general observation that biologically relevant (IV/V/VI) redox transitions occur at lower redox potentials in W than in Mo complexes; consequently, W is generally preferred over Mo in low-potential redox catalysis [Andreesen and Makdessi, 2008; L’vov et al., 2002; Pushie et al., 2014; Roy and Adams, 2002]. However, there are also a few exceptions, e.g. the XO family member 4-hydroxybenzoyl-CoA reductase catalyzes a reaction at $E^\circ < -500$ mV [Unciuleac et al., 2004] and a Mo(V/IV) redox transition at $E^\circ = -500$ mV was determined [Boll et al., 2001].

Almost all Mo/W enzymes catalyze two-electron transfer redox reactions with ACH as the only exception catalyzing a ‘true’ nonredox reaction [Hille, 2013; Pushie et al., 2014]. Notably, the Mo-containing pyrogallol- and phenolglycolin transhydroxylase (DMSOR family) does not catalyze a net redox reaction; however, the overall reaction can be divided into two consecutive oxidation/re-

Fig. 1. The bis-WPT cofactor. DMSOR family: $X = $ Cys-SH or Se-Cys; $Y = $ inorganic O or S atom; $R = $ GMP. AOR family: $X = $ O (AORs) or Cys-SH (class II BCRs); an additional Y-ligand was not identified in AORs but is present in class II BCRs (see fig. 7); $R = $ H.

Fig. 2. Reactions catalyzed by WPT-containing enzymes. a FDH. b Formylmethanofuran dehydrogenase (MFR). c AOR. d ACH. e BCR. a, b, d DMSOR family. c, e AOR family. For AORs, the biological function is rather the oxidation of aldehydes than the reduction of carboxylic acids (shown in d).
duction partial reactions [Boll et al., 2005]. The two-electron redox reactions normally involve oxo- or hydroxo transfer with the substrate or product being directly coordinated to the Mo/W via an oxygen atom [Hille, 2013; Pushie et al., 2014]. The only exceptions appear to be W-containing BCRs, which contain an occupied W ligation shell without the option of additional substrate or product binding [Weinert et al., 2015].

In this review, we summarize our current knowledge of ACH and class II BCR, two bis-WPT-containing enzymes that have only recently been studied in detail. The biochemical, structural and mechanistic data obtained provide initial insights into their intricate reactions and expand our knowledge of the variability of Mo-/W-dependent catalysis in biology.

Acetylene Hydratase

Biological Function of ACH

Acetylene (C$_2$H$_2$) is well known as an inhibitor of microbial processes. It can interact with the active site of numerous metal-dependent enzymes, such as nitrogenase, hydrogenase, ammonia monoxygenase, methane monoxygenase, assimilatory nitrate reductase or nitrous oxide reductase [Hyman and Arp, 1988]. Acetylene is a minor trace gas in today’s Earth atmosphere and can be used as carbon and energy source by distinct microorganisms [Abbasian et al., 2015; Oremland and Voytek, 2008]. The W and Fe-S enzyme ACH was originally discovered from Pelobacter acetylenicus by Schink [1985] (EC 4.2.1.112) and studied in great detail over the past three decades. ACH is a hydrolyase, it catalyzes the addition of one molecule of water to the C≡C triple bond of acetylene to form acetaldehyde, which is then further converted to ethanol and acetate (equations 1, 2):

\[
\text{C}_2\text{H}_2 + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{CHO} \quad \Delta G'_o = -111.9 \text{ kJ per mol acetaldehyde (1)}
\]

The subsequent disproportionation of acetaldehyde to ethanol and acetate yields by far less energy, but is still exergonic:

\[
2 \text{CH}_3\text{CHO} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{CH}_2\text{OH} + \text{CH}_3\text{COO}^- + \text{H}^+ \quad \Delta G'_o = -17.3 \text{ kJ/mol acetaldehyde (2)}
\]

Clearly, the conversion of C$_2$H$_2$ by ACH is distinct from the only other known enzymatic reaction of acetylene, the reduction to ethylene (C$_2$H$_4$) by nitrogenase [Stewart et al., 1967]. Notably, the addition of one molecule of water to C$_2$H$_2$ is formally not a redox reaction; however, ACH activity depends on the presence of a strong reducing agent, e.g. Ti(III) citrate or Na+ dithionite [Meckenstock et al., 1999]. Cyanide (CN⁻) as well as nitric oxide (NO) act as inhibitors; organic nitriles (R-CN) and isonitriles (R-NC) did not react with ACH, neither did propine (CH$_3$C≡CH) nor structurally related compounds, such as HOOC-C≡CH, HOOC-C≡CCOOH or HOCH$_2$≡CH [Seiffert, 2007].

General Properties

ACH from *P. acetylenicus* is so far the only ACH that has been purified and studied by biochemical, spectroscopic, crystallographic and computational methods. The first purification of ACH was published in 1995 [Rosner and Schink, 1995], followed by a high-resolution crystal structure [Seiffert et al., 2007] and heterologous expression and site-directed mutagenesis of several amino acids located at the active site [Ten Brink et al., 2011]. ACH was isolated from the soluble fraction of *P. acetylenicus* cells as a monomer [73 kDa/SDS-PAGE; 83.5 kDa/MALDI mass spectrometry (MS)]. Activity of ACH depended on the presence of tungstate, or molybdate, in the growth media. Maximum activity of the enzyme reduced with 2 mM Ti(III) citrate was observed at pH 6.0–6.5, the temperature optimum was around 50°C [2 mM Ti(III) citrate; pH 7.0], and the K_m for acetylene was 14 μM [Rosner and Schink, 1995].

ACH is a member of the DMSOR family based on its amino acid sequence and its crystal structure. When purified under N$_2$/H$_2$ (94/6% v/v) atmosphere, it contains 0.4–0.5 mol W/mol enzyme and 3.7–3.9 mol Fe/mol enzyme (inductively coupled plasma MS) [Meckenstock et al., 1999; Rosner and Schink, 1995; Ten Brink et al., 2011], and the bis-WPT-guanine-dinucleotide cofactor. When isolated under N$_2$/H$_2$ (94/6% v/v) atmosphere, ACH was silent in electron paramagnetic resonance (EPR) spectroscopic analysis; EPR spectra of the enzyme reduced with dithionite showed the typical signal of a low-potential ferredoxin-type [4Fe-4S]$^{1+}$ cluster (g_x = 2.048, g_y = 1.939, g_z = 1.920 [Meckenstock et al., 1999]). Upon oxidation of ACH with one equivalent hexacyanoferrate(III) ([Fe(CN)$_6$]$^{3-}$), the spectra revealed the signal of a W(V) center (g_x = 2.007, g_y = 2.019, g_z = 2.048). The dependence of ACH activity on the applied redox potential was investigated by potentiometry, giving a standard midpoint potential of −410 mV for the [4Fe-4S] cluster [Meckenstock et al., 1999]. The enzyme activity had a midpoint potential around −340 mV, indicating that ACH was active in the W(IV) state, whereas the redox state of the iron-sulfur center appeared to be less important for enzyme activity.
Notably, a Mo-dependent active form of ACH could be obtained from *P. acetylenicus*; activity with both Mo or W has also been demonstrated for another member of the DMSOR family [Stewart et al., 2000]. Growth of *P. acetylenicus* in medium containing only trace amounts of tungstate (2 vs. 800 nM in the original tungstate medium) and elevated amounts of molybdate (2 μM vs. 6 nM) led to a Mo form of ACH (ACH-Mo) which was 10 times less active than the original ACH-W but still converted acetylene to acetaldehyde at a rate of 1.9 versus 14.8 μmol/min/mg of the original ACH-W. ACH-Mo contained 0.45–0.51 mol Mo/mol enzyme and 2.7–3.1 mol Fe/mol enzyme; W was absent. The EPR spectrum of ACH-Mo, as isolated in the absence of dioxygen, showed a weak signal from a Mo(V) center (g_x = 1.978, g_y = 1.99, g_z = 2.023), which increased in size upon addition of [Fe(CN)₆]³⁻. Di-thionite reduced samples of ACH-Mo revealed again the signal of the ferredoxin-type [4Fe-4S] cluster as found in ACH-W. Furthermore, only minor differences in the circular dichroism spectroscopy data of the two forms of ACH were detected. Attempts to replace W by V failed [Abt, 2001; Ten Brink, 2010].

Structural Properties of ACH

A first high-resolution X-ray structure (1.26 Å) of ACH was published in 2007 (PDB ID 2E7Z) [Seiffert et al., 2007]. The crystallization of ACH was achieved under a N₂/H₂ (94/6%) atmosphere at 20°C using the sitting drop vapor diffusion method [Einsle et al., 2005]. Despite the minor differences in the circular dichroism spectroscopy data of ACH-W and ACH-Mo, only the former formed protein crystals suitable for X-ray analysis.

Overall Structure

ACH is a monomer of 730 amino acids, containing a bis-WPT guanine dinucleotide cofactor moiety and a [4Fe-4S] cluster. The two cofactors are buried deep inside a four-domain fold, as typically observed for enzymes of the DMSOR family (fig. 3a) [Seiffert et al., 2007, 2008]. Domain I (residues 4–60) harbors the [4Fe-4S] cluster, ligated by the four cysteine residues Cys9, Cys12, Cys16 and Cys46. Domains II (residues 65–136 and 393–542) and III (residues 137–327) have an αβα-fold with homologies to the NAD-binding fold of dehydrogenases. Each of these two domains provides hydrogen bonds, required to bind one of the WPT guanine dinucleotides (generally referred to as MGD, MPT guanine dinucleotide), as they are identical in Mo- or W-containing cofactors of the DMSOR family). The interactions are mainly provided by variable loop regions at the C-terminal ends of the strands of a parallel β-sheet. The coordination of the two MGD cofactors is completed by domain IV (residues 590–730), which consists mainly of a seven-strand β-barrel fold [Seiffert et al., 2007].

The overall structure of ACH and the position of the cofactors, with the two MGDs (referred to as MGD_p and...
MGD$_Q$ in an elongated conformation and the [4Fe-4S] cluster close to the MGD$_Q$ are similar to all other structures of members of the DMSOR family published so far. However, the access from the surface of the protein towards the active site, consisting of the W center coordinated by the two MGDs with the [4Fe-4S] cluster in close proximity, is unique for an enzyme of the DMSOR family. In all structures of this family of enzymes published so far, the access funnel starts at the pseudo twofold axis between domains II and III. A shift in the loop region of residues 327–335 towards the surface of the protein and further rearrangements of the residues 336–393 block this entrance in ACH. In other enzymes, e.g. nitrate reductases and FDHs, this loop region separates the [4Fe-4S] cluster from the Mo/W site. In ACH, the shift of this loop opens a new access funnel towards the W center at the intersection of domains I, II and III, allowing the substrate to approach the W site from a completely different direction compared with other enzymes of the DMSOR family [Seiffert et al., 2007].

The Active Site
While the overall fold of ACH is remarkably similar to those observed in the enzymes of the DMSOR family, major structural rearrangements are found at the active site. The W center in its reduced W(IV) state is coordinated by the four sulfur atoms of the dithiolene moieties of the P$_{MGD}$ and Q$_{MGD}$ cofactors, and by one sulfur atom of a cysteine residue (Cys141). The sixth ligand position is occupied by a tightly coordinated oxygen atom at a distance of 2.04 Å from the W ion. Due to a rotation of the P$_{MGD}$ cofactor, the geometry of the coordination in ACH is not square pyramidal or trigonal prismatic, as typically found in enzymes of this family [Dobbek and Huber, 2002], but resembles more an octahedral or trigonal antiprismatic coordination geometry (fig. 3b) [Seiffert et al., 2007].

The access funnel opened by a shift in the loop region of residues 327–335 ends in a ring of six bulky hydrophobic residues (Ile14, Ile113, Ile142, Trp179, Trp293 and Trp472) that form a small hydrophobic pocket directly above the oxygen ligand and an adjacent aspartate residue (Asp13; fig. 3c). Asp13, a direct neighbor of the [4Fe-4S] coordinating Cys12, forms a tight hydrogen bond of 2.41 Å to the oxygen ligand of the W ion. Although it has not yet been possible to solve a crystal structure with acetylene or an inhibitor bound, an acetylene molecule docked computationally to the ACH structure gave an excellent fit in the pocket of the hydrophobic ring with its carbon atoms positioned directly above the oxygen ligand and the carboxylic acid group of Asp13 [Seiffert et al., 2007]. The nature of the oxygen ligand of the W center is crucial for deriving the ACH reaction mechanism. The bond length of 2.04 Å observed in the X-ray structure was between the values expected for a hydroxo ligand (1.9–2.1 Å) and a coordinated water molecule (2.0–2.3 Å). Seiffert et al. [2007] chose a water molecule, since the close proximity of the heavy scatterer W may distort the distance observed in the X-ray data by Fourier series termination and a simulation of this effect resulted in a true ligand distance of 2.25 Å.

Site-Directed Mutagenesis and Mechanistic Aspects
The development of a successful protocol for the heterologous expression of ACH in *Escherichia coli* allowed for site-directed mutagenesis studies [Ten Brink et al., 2011]. Overall, when related to its W content, the activity of the heterologously produced ACH was nearly identical to that of the native enzyme purified from *P. acetylenicus*. Three amino acids at the active site were exchanged by site-directed mutagenesis: Asp13, Lys48 and Ile142 (fig. 4). Asp13 forms a hydrogen bond to the oxygen ligand (OH$^-$ or H$_2$O) of the W center and is assumed to be catalytically important in the sense that it activates the
oxygen atom for the addition to the C≡C triple bond. The mutation of Asp13 to alanine (D13A variant) resulted in a dramatic loss of activity (0.2 vs. 2.6 μmol/min/mg; wild type), while the mutation of Asp13 to glutamate (D13E variant) had little effect (2.5 μmol/min/mg). These results underline the important role of the carboxylic acid group, as discussed below.

Residue Lys48 is located between the [4Fe-4S] cluster and the MGDₐₘ cofactor (fig. 3, 4). In other enzymes of the DMSOR family, this residue is involved in electron transfer between the two cofactors [Dobbeck and Huber, 2002]. As expected given that the reaction of ACH does not involve net electron transfer, the exchange of Lys48 against alanine did not affect catalysis. Finally, Ile142 is part of the hydrophobic pocket that is expected to form the substrate-binding cavity at the end of the access tunnel towards the active site (fig. 3, 4). Its mutation to alanine resulted in a strong loss of activity, in support of the idea that the cavity within the hydrophobic ring is the substrate-binding site of ACH. However, until now, numerous experiments to locate the binding of the substrate acetylene in crystallography or by spectroscopic methods have not been successful [Seiffert, 2007; Ten Brink, 2010].

Computational Studies

The mechanism of ACH has been investigated in several computational studies [for review, see Ten Brink, 2014]. One important prerequisite for calculating an accurate mechanism is the correct assignment of the protonation state of the active site residues. This is best done by electrostatic calculations [Bashford and Karplus, 1990; Ullmann and Knapp, 1999]. In these calculations, the shift of the protonation energy of a titratable residue due to the protein environment compared to the protonation energy of a titratable group free in aqueous solution is calculated using the Poisson-Boltzmann equation [Ullmann and Bombarda, 2014]. The shift in protonation energy is caused by two effects: (i) the protein environment can stabilize, or destabilize, charged groups by specific interactions such as hydrogen bonds or salt bridges, and (ii) the titratable group resides in a different solvation environment within the protein compared to the situation of an isolated titratable group in aqueous solution. In fact, in the protein, the titratable group is at least partially shielded from the solvent, which lowers the reaction field stabilization and thus destabilizes the charged state of the titratable group. However, a protein has usually several interacting titratable groups. In order to obtain a titration of a particular group, the protonation probability has to be calculated by a thermodynamic average over all possible protonation states of the protein [Bashford and Karplus, 1990], which can be achieved by a Monte Carlo averaging for large proteins [Beroza et al., 1991; Ullmann and Ullmann, 2012]. If two or more groups interact strongly and titrate in the same pH range, the corresponding titration curves can adopt a nonsigmoidal shape [Klingen et al., 2006]. In extreme cases, even nonmonotonic titration curves can be observed [Onufriev et al., 2001; Sudmeier and Reilley, 1964]. This behavior can be interpreted as a pH dependence of the protonation energy, and thus the pKₐ value, of a particular group in the protein [Bombarda and Ullmann, 2010]. Such a pH-dependent protonation energy can, however, also be found for residues that titrate at very different pH but interact strongly. A consequence of this finding is that a pKₐ value that is read from the midpoint of a pH titration curve of a group cannot always be associated with a defined protonation energy. Instead, the protonation energy has to be considered pH dependent if several titratable groups interact strongly [Ullmann and Bombarda, 2013].

One remarkable result of the calculated titration curves for ACH was the finding that the COOH group of Asp13, which is located right at the active site of the enzyme close to the W center (fig. 3, 4), did lose its proton at high pH [Seiffert et al., 2007]. A free energy calculation of the protonation energy indicates that the protonated state of Asp13 is stabilized by about 9 kcal/mol at pH 7 [Ullmann, unpubl. results]. This finding is not too surprising, since the active site is very well shielded from the solvent which would destabilize the negatively charged (i.e. deprotonated) state of Asp13. Moreover, the electrostatic potential at the active site is already overall negative due to the presence of the W center [charge of −1 due to the oxidation state W(+IV) and five negatively charged sulfur ligands] and the reduced iron sulfur cluster (which has a total charge of −3). In another theoretical study, Liao et al. [2010] estimated a pKₐ value of 6.3 for Asp13 using PROPKA [Bas et al., 2008]. However, the PROPKA algorithm used does not take into account either the charge effect of the W center nor that of the iron sulfur cluster, which will most likely lead to an underestimation of the pKₐ value of Asp13.

The crystal structure of ACH solved at high resolution suggests two alternative reaction mechanisms [Seiffert et al., 2007]. Depending on the nature of the oxygen ligand of the W center (OH⁻ or H₂O), either a nucleophilic addition of H₂O to the acetylene C≡C triple bond or an electrophilic Markovnikov-type addition has been proposed. Notably, in both suggested mechanisms, the substrate
acetylene does not interact directly with the W ion, but is located in the pocket formed by a hydrophobic ring interacting with the oxygen ligand which is activated by the W(IV) center and Asp13. The crystal structure favors the coordination of a water molecule over the coordination of a hydroxo ligand, due to a W–O bond distance of about 2.25 Å. A bound water molecule could gain a partially positive net charge by the proximity of the protonated Asp13, turning it into an electrophile that could directly attack the C≡C triple bond. In several computational studies [for review, see Ten Brink, 2014], this second shell mechanism was investigated. However, in all studies only reaction pathways with unrealistically high barriers were obtained. Therefore, different mechanisms were suggested for ACH based on these computational studies involving a direct binding of the substrate acetylene to W. Especially in the work of Liao et al. [2010], a mechanism with reasonably low barriers was suggested. Notably, Asp13 was assumed to be deprotonated in these calculations, most likely an unrealistic assumption as discussed above. In the mechanism proposed by Liao et al. [2010], acetylene forms a η²-complex with the W ion by displacing the water ligand. The energy barrier for this step was not calculated in this study. The water molecule that was displaced by acetylene attacks the η²-acetylene complex forming a vinyl anion, and a water proton is transferred to the Asp13 carboxylate group. In a subsequent step, the resulting vinyl anion is protonated by Asp13 yielding the corresponding vinyl alcohol. The tautomerization of the vinyl alcohol to acetaldehyde most likely occurs spontaneously in solution after the release from the active site or even at the active site. In any case, this latter reaction will proceed spontaneously with a low energy barrier, perhaps with the assistance of water and Asp13 in case this reaction occurs at the active site. The mechanism that was found by pure QM cluster calculations [Liao et al., 2010] was recently also investigated by QM/MM calculations [Liao and Thiel, 2012, 2013], which led to similar conclusions.

Even though the mechanism involving a η²-complex of acetylene with W may appear plausible, a direct or indirect proof of this mechanism is still lacking. Different reaction pathways that have not been discovered yet may exist. Moreover, the transition barrier for the replacement of water by acetylene has not been calculated yet. In the energetic considerations, it must also be considered that the concentration of water is much higher than that of acetylene. A crucial point in the understanding of the mechanism of ACH will be the determination of the protonation state of Asp13. Thus, more theoretical and experimental work will be required before the quest for the mechanism of ACH can be considered to be finished [Ten Brink, 2014].

Distribution of ACH-Related Enzymes

The genus Pelobacter comprises strictly anaerobic fermenting, Gram-negative Deltaproteobacteria. The best investigated species within this genus are Pelobacter carbinolicus and P. acetylenicus. The genome of P. carbinolicus has been sequenced; this organism is closely related to P. acetylenicus. Pelobacter species feed only on a narrow substrate range. P. carbinolicus and P. acetylenicus degrade acetoin, 2,3-butandiol, ethylene glycol (P. carbinolicus) or acetylene (P. acetylenicus) in pure culture, or ethanol in coculture with a syntrophic partner. The metabolism of all these substrates includes acetaldehyde as central intermediate, which was proposed to be the ecological specialization or niche of these bacteria [Schink, 2006; Schmidt et al., 2014].

In principle, the electron-rich C≡C triple bond and the excellent solubility in water make acetylene a suitable substrate for microorganisms. The first report on bacteria living with acetylene was published as early as 1932 [Birch-Hirschfeld, 1932]. Almost 50 years later, Norcadia rhodochrous was aerobically grown with acetylene as sole source of carbon and energy in the presence of dioxygen; in addition, ACH activity was detected in cell-free extracts from Rhodococcus A1 grown with acetylene under fermentative conditions [de Bont and Peck, 1980; Kanner and Bartha, 1979]. Anaerobic oxidation of acetylene to CO₂ was found in enrichment cultures from estuarine sediments. Two groups of bacteria were identified: (i) fermenting bacteria converted acetylene to acetaldehyde, which they transformed to acetate and ethanol, and (ii) sulfate-reducing bacteria further oxidized both ethanol and acetate to CO₂ [Culbertson et al., 1988]. According to these authors, the morphology of the bacteria was similar to that of P. acetylenicus [Schink, 1985]. Rosner et al. [1997] described aerobic acetylene-degrading bacteria from soil samples. Two isolates were assigned to the species Rhodococcus opacus, two others to Rhodococcus ruber and Gordonia sp. ACH activity was present in cell-free extracts of R. opacus and required Ti(III) citrate, whereas in experiments with cell-free extracts of R. ruber and Gordonia sp. no reductant had to be added. However, cross reactivity with antibodies raised against ACH from strictly anaerobic fermenting organism P. acetylenicus was not found, and the authors concluded that ACHs represent a biochemically heterogeneous group of enzymes. In this context, when performing activity or microbial growth experiments with commercially available acetylene gas,
one should recall that this gas usually contains acetone. In growth experiments with the aerobic strain MoAcy2 (Gordonia alkanivorans), a zinc-dependent enzyme (M, 40 kDa) could be enriched from cell extracts which appeared to be an oxygen-tolerant ACH. However, when using purified acetylene gas (grade 2.6; passage through concentrated sulfuric acid) [Hyman and Arp, 1988], formation of acetaldehyde from acetylene was no longer observed [Fischer et al., unpubl. results].

Recently, a more systematic survey was conducted on the presence of ACH activity. Anoxic samples from chemically diverse field sites were assayed for their ability to consume acetylene. Over incubation periods of 10–80 days, selected samples from 7 of the 13 tested sites displayed significant C₂H₂ removal. No significant formation of ethylene was noted in these incubations, and C₂H₂ consumption was attributed to ACH rather than to nitorgenase activity. The lag phase was explained by selecting and enriching bacteria that thrive on acetylene. This would mean that acetylene-fermenting bacteria were rather scarce in the original samples. Furthermore, the authors tried to amplify genes coding for ACH from DNA extracted from the sediment and water samples. The use of primers synthesized from the ACH gene of *P. acetylenicus* resulted in 63 PCR products out of 645 environmental samples (9.8%). Since ACH-like genes could not be amplified in all samples exhibiting ACH activity, it was argued that the primer may have been overly specific for the ACH gene of *P. acetylenicus* [Miller et al., 2013]. Early BLASTP searches showed that ACH isolated from *P. acetylenicus* had the highest similarity to a putative MPT oxidoreductase of the hyperthermophilic archaeon *Archaeoglobus fulgidus* (protein accession No. NP_070031); the sequence identity was about 35%. Five of the 15 cysteine residues of ACH were highly conserved and 4 of them showed a sequence motif [C-x-x-C-x-x-x-C-(x)ₙ-C], representing a motif for a [4Fe-4S] site. In view of the results of the BLASTP searches, *A. fulgidus* was tested for ACH activity at 80°C using the thermostable alcohol dehydrogenase from *Sulfolobus solfataricus*. Neither the crude extract nor partially purified fractions from *A. fulgidus* showed any significant ACH activity [Abt, 2001].

Class II Benzoyl-CoA Reductase

Biological Function of BCRs

For a long time, it had generally been accepted that the complete degradation of aromatic compounds requires molecular oxygen as cosubstrate for ring hydroxylation and cleavage catalyzed by mono- and dioxygenases. However, in the past decades, an increasing number of aromatic compound-degrading anaerobes have been isolated from sediments of rivers, lakes, seas or aquifers contaminated with aromatic compounds. These facultative or obligate anaerobes belong to nearly all physiological classes, including denitrifying, metal oxide-respiring, sulfate-reducing and fermenting bacteria, as well as bacteria with an anoxygenic photosynthesis [Boll et al., 2014; Carmona et al., 2009; Fuchs et al., 2011].

In anaerobic bacteria, the vast majority of monocyclic aromatic growth substrates are converted to the central intermediate benzoyl-CoA by channelling reactions of the peripheral catabolism. Benzoyl-CoA or analogues with hydroxy, methyl or halogen substituents at the ring serve then as substrates for de aromatizing reductases that reduce the benzene moiety to the cyclic, conjugated cyclohexa-1,5-diene-1-carbonyl-CoA (dienoyl-CoA; fig. 2e) or analogs with substituents of it [Boll, 2005; Boll et al., 2014; Buckel et al., 2014; Carmona et al., 2009; Fuchs et al., 2011]. The two-electron reduction of aromatic rings to cyclic dienes is known as a basic reaction in organic chemical synthesis referred to as Birch reduction [Birch, 1944; Zimmerman, 2012]. It uses alkali metals dissolved in ammonia to form solvated electrons as donors; alcohols serve as weak proton source. It proceeds in single electron transfer and protonation step with the first electron transfer forming a highly reactive radical anion transition state. Considering the nonphysiological conditions of Birch reductions, it was surprising that such a reaction can be accomplished in a biological environment [Buckel et al., 2014; Kung et al., 2010; Mobitz and Boll, 2002].

The reduction potential of the benzoyl-CoA/dienoyl-CoA couple is with E° = −622 mV among the most negative ones known in biology [Kung et al., 2010]. This low two-electron reduction potential can be rationalized by the resonance-stabilized aromatic π-electron system. As there is no common biological electron donor providing electrons at E°′ < −500 mV, reductive benzoyl-CoA deaomatization has to be coupled to an exergonic reaction. There are two different solutions for this thermodynamic problem, realized by two different classes of BCRs. The class I and II BCRs differ fundamentally in their amino acid sequence, molecular architecture and cofactor content, but most surprisingly, both yield the identical conjugated dienoyl-CoA product (fig. 2e).

The class I BCR was identified and isolated from the denitrifying *Thauera aromatica* in 1995 [Boll and Fuchs, 1995]; it couples the endergonic reduction of benzoyl-CoA to dienoyl-CoA by a reduced ferredoxin to a stoichiometric
ATP hydrolysis (two ATP for the transfer of two electrons [Boll et al., 1997]). Class I BCRs have been found in facultatively anaerobic bacteria and in the aromatic compound degrading archaeon Ferroglobus placidus [Holmes et al., 2012; Schmid et al., 2015]. It belongs to the recently introduced BCR/HAD family of radical enzymes that drive low-potential single electron transfer steps to a stoichiometric ATP hydrolysis; they usually contain exclusively [4Fe-4S] clusters as cofactors [Buckel et al., 2014]. Almost 15 years later, an ATP-independent class II BCR was identified as a novel member of the AOR family of bis-WPT-containing enzymes; they appear to be present only in obligately anaerobic bacteria [Kung et al., 2009; Löffler et al., 2011].

General Properties of Class II BCR

Proteomic and transcriptomic analyses of the Fe(III)-respiring Geobacter metallireducens identified a benzoate-induced cluster of eight genes, referred to as bam-BCDEFGHI (benzoic acid metabolism) [Wischgoll et al., 2005]. The corresponding BamBCDEFGHI complex is proposed to have a modular composition (fig. 5b) [Boll et al., 2014]. BamB shows up to 33% amino acid sequence identities to members of the AOR family of W enzymes, and was predicted to contain the site of benzoic-CoA reduction. The BamCDEF components show sequence identities to components of heterodisulfide reductases and F₄₂₀-independent hydrogenases of methanogens (e.g. NuoEFG of E. coli). So far, only the BamBC components from G. metallireducens have been isolated. For the hydrogenase/heterodisulfide complex, a flavin-based electron bifurcation has experimentally been verified in which endergonic ferredoxin (Fd) reduction by H₂ is driven by the exergonic reduction of the heterodisulfide using the same donor. For class II BCR, an analogous flavin-based electron bifurcation is predicted, in which the endergonic reduction of benzoyl-CoA by reduced ferredoxin is coupled to the exergonic reduction of NAD(P)⁺ using the same donor. In both, hydrogenase/heterodisulfide reductase and benzoyl-CoA reductase an FAD bound to HdrA/BamE is considered as electron bifurcation cofactor. The 4 C depicted in HdrA means a motif of cysteins conserved with heterodisulfide reductases/BamEs.

Unusual Tungsten Enzymes

Fig. 5. Schematic subunit architecture/cofactor contents of the hydrogenase/heterodisulfide reductase complex and class II benzoyl-CoA reductase. The interaction of individual components has not been experimentally verified. Subunits depicted in similar colors and sizes indicate amino acid sequence identities >30%.

a Components of hydrogenase/heterodisulfide reductases from hydrogenotrophic methanogenic archaea. Light blue = Subunits of methyl viologen-reducing hydrogenase (MvhAGD); green = subunits of heterodisulfide reductase (HdrABC). b Components of class II benzoyl-CoA reductase (BamBCDEFGHI). Light blue = Components with similarities to MvhGD; green = components with similarities to HdrABC; red = active site component similar to AORs; dark blue = components similar to soluble subunits of complex I (e.g. NuoEFG of E. coli). So far, only the BamBC components from G. metallireducens have been isolated. For the hydrogenase/heterodisulfide complex, a flavin-based electron bifurcation has experimentally been verified in which endergonic ferredoxin (Fd) reduction by H₂ is driven by the exergonic reduction of the heterodisulfide using the same donor. For class II BCR, an analogous flavin-based electron bifurcation is predicted, in which the endergonic reduction of benzoyl-CoA by reduced ferredoxin is coupled to the exergonic reduction of NAD(P)⁺ using the same donor. In both, hydrogenase/heterodisulfide reductase and benzoyl-CoA reductase an FAD bound to HdrA/BamE is considered as electron bifurcation cofactor. The 4 C depicted in HdrA means a motif of cysteins conserved with heterodisulfide reductases/BamEs.
(BamCDE, 40–46%; N-terminus of BamF, 55%). They are predicted to contain flavins, numerous FeS clusters and a selenocysteine (BamF). Finally, the putative BamGHI subunits are similar to NADH binding, and flavin/FeS cluster-containing components of NADH:quinone oxidoreductases (e.g. 24–41% to NuoEFG components from E. coli). It is predicted that the BamDEFGHI components are involved in a flavin-based electron bifurcation process to accomplish endergonic electron transfer from a low-potential external donor, such as reduced ferredoxin, to the active site [Boll et al., 2014]. This assumption is based on the in vitro evidence for such a flavin-based electron bifurcation in the homologous heterodisulfide-reductase/hydrogenase complex in hydrogenotrophic methanogenic archaea [Buckel and Thauer, 2013]. In Methanothermobacter marburgensis, the endergonic reduction of ferredoxin (E°′ = −500 mV) by H2 (E°′ = −414 mV) is driven by the coupling to the exergonic reduction of the CoMS-S-CoB disulfide (E°′ = −140 mV) [Costa et al., 2010; Kaster et al., 2011]. The HdrA component of this complex is similar to BamE, and both are predicted to harbor the electron-bifurcating FAD cofactor. In case of class II BCR, reduction of benzoyl-CoA (E°′ = −622 mV) at the active site BamB by an external donor, e.g. a reduced ferredoxin (E°′ = −500 mV) could be coupled to the exergonic reduction of a second acceptor, e.g. NAD+, at the predicted NAD+ binding BamGHI module (fig. 5b).

Initial attempts to isolate the predicted BamBCDEFGHI complex failed. However, when extracts of G. metallireducens grown with benzoate and Fe(III) citrate were treated with 500 mM KCl, a dissociation of the active site BamE, and both are predicted to harbor the electron-bifurcating FAD cofactor. In case of class II BCR, reduction of benzoyl-CoA (E°′ = −622 mV) at the active site BamB by an external donor, e.g. a reduced ferredoxin (E°′ = −500 mV) could be coupled to the exergonic reduction of a second acceptor, e.g. NAD+, at the predicted NAD+ binding BamGHI module (fig. 5b).

Structural Properties and Proposed Mechanism of Class II BCR

Overall Structure

The structure of the Bam(BC)2 heterotetramer was recently solved by X-ray crystallography in the as-isolated Zn2+-bound state and in complex with the substrate, product and the inhibitor monoenoxy-CoA based on an-
aerobically grown protein crystals [Weinert et al., 2015]. The Bam(BC)$_2$-CoA-ester complex structures are essentially identical at the current resolution and therefore treated as one structural state. The highest resolution of 1.9 Å was obtained for the structure of the Bam(BC)$_2$-inhibitor complex, which was used for fold, W center and substrate binding description. Bam(BC)$_2$ is built up of two central subunits BamC contacting each other and two subunits BamB, each attached to one subunit BamC but not to each other (fig. 6). This architecture suggests two catalytically independent active sites for benzoyl-CoA reduction. However, it also suggests that the electron supply to the two W centers in the Bam(BC)$_2$ complex might be coupled. Similar as other members of the AOR family, BamB is composed of three domains [Chan et al., 1995; Hu et al., 1999] and harbors one bis-WPT cofactor, one Zn atom and one [4Fe-4S] cluster (fig. 6). The electron-transferring BamC subunit has a ferredoxin-like fold and binds three additional [4Fe-4S] clusters. Electrons are transferred over a total distance of more than 40 Å from the distal [4Fe-4S] cluster of BamC to the active site via the [4Fe-4S] clusters of BamC and BamB (fig. 6).

W and Zn Binding Sites
Catalysis of BCRs is predicted to occur in a highly hydrophobic, encapsulated environment to avoid futile electron transfer from the generated low-potential W(IV) electron donor site to solvent-derived protons. In agreement with this assumption, the W center is located in an essentially aprotic and locked cavity in both the ‘as-isolated’ and CoA-ester-bound states. It is characterized by a distorted octahedral coordination shell which completely shields W and thus prevents binding of an additional ligand (fig. 7). W is coordinated to the four sulfur atoms of the bis-WPT cofactor and two additional ligands. The fifth ligand is a sulfhydryl sulfur of a highly conserved cysteine that is missing in AORs; it, therefore, serves as a distinguishing marker of class II BCRs. A sixth inorganic ligand of the W atom was identified, the nature of which is still unclear [Weinert et al., 2015]. The electron density maps obtained from X-ray structure analysis argue against monoatomic C/N/O ligands, and are in favour of an electron-rich sulfur or chloride ligand (fig. 7). In contrast, extended X-ray absorption fine-structure (EXAFS) analyses at the W L$_{III}$ edge did not support such a scenario. They rather identified, next to the five S atoms, two backscatterers at distances of 2.0 and around 3.2 Å, fitting perfectly to a linear diatomic ligand such as CN$^-$ or CO. In this context, it is remarkable that addition of KCN had a slight but reproducible stimulatory effect on BCR activity. However, Fourier transform infrared spectroscopy, which has frequently been used to detect cyanide ligands bound to Fe atoms in hydrogenases [Pandelia et al., 2010], were not supportive for a W-C≡N bond. Moreover, numerous chemical procedures for detecting cyanide released from denaturated enzyme failed, probably due to the concomitant release of a high amount of sulfide from the [4Fe-4S] clusters. The current discrepancy between
the X-ray and EXFAS data needs further investigations, e.g. by studying enzymes from other organisms.

In agreement with inductively coupled plasma MS, metal analyses and the EXAFS data recorded at the Zn K edge, the as-isolated Bam(BC)$_2$ structure reveals a Zn$^{2+}$ atom 11.5 Å away from W and is not directly involved in the catalytic process (fig. 8). The Zn$^{2+}$ atom is tetrahedrally coordinated by Glu251, His255, Glu257 and His260. These residues are invariant in class II BCRs, suggesting a crucial role of the Zn$^{2+}$ site [Weinert et al., 2015]. Indeed, the Zn$^{2+}$ rigidifies a largely irregular polypeptide segment and contributes to the encapsulation of the active site in the absence of a CoA ester substrate. This shielding property might be essential for protecting the active site for uncontrolled reactions with protons and water.

CoA-Ester Binding

The structures of the Bam(BC)$_2$-CoA ester complexes revealed CoA ester binding inside a long funnel-like channel of 20 Å [Weinert et al., 2015]. CoA ester binding induces the destruction of the Zn$^{2+}$ binding site and the expulsion of the metal from the enzyme as evidenced by X-ray structural and EXAFS data from the two conformational states (fig. 8). In particular, Phe264, Phe323 and Leu434 that occlude the access to the W center in the ‘as-isolated’ state are displaced upon CoA ester binding. The former Zn$^{2+}$ ligands are rearranged and form a proton storage site that connects the C4 of the substrate with the bulk solvent via a proton transfer pathway. Water molecules cannot reach the substrate in this way, and proton transfer to the W center is blocked by the substrate (fig. 8). In addition, the bound CoA ester takes over the task from the released Zn$^{2+}$ to rigidify the irregular segment. The presence of two alternative Zn- and CoA ester-bound states of BCR was experimentally substantiated by kinetic studies demonstrating the inhibitory effect of supplemental Zn$^{2+}$ with a K_i of 6.7 ± 0.5 μM [Weinert et al., 2015]. The mode of inhibition is not purely competitive, which reflects that Zn$^{2+}$ and the CoA ester substrate bind to different conformations of the enzyme. Due to the usually submicromolar concentration of Zn$^{2+}$ in the cell, the K_d value in the absence of the competing CoA ester is considered to be much lower than the K_i determined.

The six-membered rings of the CoA esters accurately fit into a predominantly hydrophobic cavity (fig. 8). The only hydrophilic residues are His260 and Glu251 that are positioned at a distance of 3.7/3.0 and 4.7/3.9 Å, respectively, apart from C3/C4 of the substrate ring. In particular, His260 serves most likely as proton donor during substrate reduction. The absence of proton donors near C2 or C6 of the substrate ring explains why the enzymatic reduction of the aromatic ring yields the thermodynamically favored conjugated 1,5-dienoyl-CoA. In contrast, the chemical Birch reduction usually proceeds via an 1,4-addition of protons to the aromatic ring resulting in the nonconjugated product [Zimmerman, 2012].

The six-membered ring cannot bind to the ligand-shielded W but lies with a distance of 3.7–4.2 Å nearly in van der Waals distance to its inorganic ligand (fig. 8). Another feature relevant for catalysis are the interactions between the thioester carbonyl of the substrate and Glu466-NE1 and Glu461-OE1, with the carboxylate of the latter being presumably protonated. Notably, the unfavorable geometry of the Glu461 side chain prevents a futile full protonation of the CoA carbonyl that would result in thioester cleavage. The suggested partial protonation of...
the CoA carbonyl is considered to stabilize negatively charged radical/nonradical intermediates during benzene ring reduction.

Catalytic Mechanism

The recent structural insights obtained shed light on the catalytic process of the class II BCR. Two scenarios appear conceivable for class II BCR catalysis: a Birch-like reduction via single electron transfer steps resulting in radical ring intermediates and a nucleophilic aromatic addition presumably via a hydride transfer reaction [Weinert et al., 2015]. The latter implies that the sixth W ligand has to act as a regenerative hydride donor. The following points rather argue for a Birch reduction-like mechanism: (i) The active site of benzoyl-CoA reduction is designed to separate the electron and proton transfer events. A proton storage site is implemented between bulk solvent and the substrate that shuttles protons to the substrate but blocks the access of water. In the absence of the substrates, proton access to the active site is also interrupted via Zn$^{2+}$ binding. (ii) The placement of the substrate ring C4 between the inorganic bis-WPT electron donor ligand and the perfectly positioned, strictly conserved His260 strongly suggests the latter as the favorite proton donor. This arrangement is also consistent with proton-coupled electron transfer steps, a well-known electron transfer principle in enzymology [Weinberg et al., 2012]. In such a scenario, the formation of a highly reactive true radical anion intermediate could be avoided (fig. 9). In contrast, a genuine hydride transfer from the bis-WPT to the C4 suggests the presence of a sulfido or hydroxo ligand at the W; both would be inconsistent with either EXAFS analyses or X-ray structural data. In case of the sixth ligand acting as hydride donor, it has to be regenerated after each turnover. This seems to be only possible by a hardly controllable inflow of water molecules during product/substrate exchange. (iii) A Birch-like mechanism would involve proton-assisted one-electron transfer steps suggesting a W(IV/V) redox chemistry (fig. 9). In agreement with W(IV/V) transitions, BamBC as isolated exhibits a $S = 1/2$ W(V) EPR signal that disappears upon reduction by dienoyl-CoA to the EPR-silent W(IV) state [Kung et al., 2009].

Distribution/Phylogenetic Tree of BCRs

A W-containing class II BCR has so far only been isolated from the Fe(III)-respiring *G. metallireducens* [Kung et al., 2009]. However, a recent study comprising in vitro
activity assays as well as gene expression and sequence analyses of the BamB, BamE and BamF components suggested that all obligately anaerobic bacteria with the capacity to degrade aromatic compounds use a class II BCR [Löffler et al., 2011]. Interestingly, all BamF, and in some cases the BamE components, contain a selenocysteine, suggesting that all class II BCRs are W/Se enzymes. The homologous MvhG and HdrA components of methanogenic archaea also often, but not always, contain selenocysteine (fig. 5). Notably, class II BCRs and hydrogenase/heterodisulfide reductase complexes are the only Se-containing enzymes in which selenocysteine is not involved in catalysis at the active site, as it is the case in the W/Se-containing FDH [Hartmann et al., 2014]. The role of selenocysteine in class II BCRs is unknown, and it is unknown whether it can be replaced by a cysteine without a loss of function.

The question arises how the genes encoding BamBs can be identified and distinguished from those encoding AORs? In other words, what are the distinguishing se-

Fig. 9. Proposed proton-coupled electron transfer mechanism of class II benzoyl-CoA reductase catalysis. As an alternative to the ultimate proton donor NE2-His260 shown here, OE2-Glu251 could be involved (not shown).
sequence elements of AORs and BCRs? We suggest the following criteria for a most likely reliable assignment of a gene/polypeptide to a true class II BCR enzyme: (i) amino acid sequence identities higher than 45% to the experimentally verified BamB from *G. metallireducens*; (ii) presence of the conserved cysteine as active site ligand for the W metal (Cys322 in *G. metallireducens* BamB) [Weinert et al., 2015], and (iii) conservation of at least three of the Zn$^{2+}$ ligands (His260, His255, Glu251 and Glu257 in *G. metallireducens* BamB) [Weinert et al., 2015]. Based on these criteria, true BamB components are found in all obligately anaerobic Deltaproteobacteria and Firmicutes that are known to degrade aromatic compounds. These comprise sulfate-reducing, Fe(III)-reducing and fermenting bacteria. An updated phylogenetic tree of BamB clearly indicates that BamB from class II BCRs form a distinct phylogenetic cluster (fig. 10; reference date July 1, 2015).

Class I and II BCRs share the trait of a high oxygen sensitivity [Boll and Fuchs, 1995; Kung et al., 2009], which

Fig. 10. Phylogenetic tree of the AOR/BamB protein family. The tree was generated from the 326 amino acid sequences with similarities to AORs and BamBs. Taxonomic classes are shown in different colors; for tree generation, BLAST was used (http://blast.ncbi.nlm.nih.gov/Blast.cgi; expect threshold 10; word size 3; max. matches in a query range 0; matrix: BLOSUM62, gap costs: existence, 11, extension: 1). The first 100 sequences obtained for AORs from *Moorella thermoaceta*ica (GI: 499710967), *Aromatoleum aromaticum* (GI: 499557869) and *Geobacter sulfurreducens* (GI: 504364365) and for BamB from *G. metallireducens* (GI: 490649584, position indicated by asterisk) were combined in one alignment and used in Mega5.2 software (http://megasoftware.net/: neighbor joining; 1,000 bootstrap replications; Poisson model; pairwise deletion of gaps/missing data). The scale bar represents a difference of 0.1 substitutions per site.
explains why they do not occur in aerobic organisms. This property also explains why during anaerobic growth with aromatic compounds oxygen detoxification systems are induced in bacteria containing class I or II BCRs [Heintz et al., 2009; Thiele et al., 2008]. The occurrence of both BCR classes in either facultative or obligate anaerobes is generally explained by the necessary energetic investment for benzene ring dearmatization and the overall yield of energy metabolism. Facultative anaerobes such as denitrifying bacteria or bacteria with an anoxygenic photosynthesis have a much higher ATP yield per aromatic compound oxidized to CO\textsubscript{2} than obligate anaerobes. Therefore, it appeared to be a rule of thumb that they can afford an ATP-dependent irreversible dearmatization step. The relatively simple architecture of class I BCR with [4Fe-4S] clusters as only cofactors and the irreversibility of its reaction enable facultative anaerobes to exploit aromatic growth substrates in appropriate ecological niches. In contrast, obligate anaerobes, such as sulfate-reducing bacteria, use a reversibly operating enzyme, which is on the one side less energy-consuming, but depends on the other side on numerous metals, uptake systems and biosynthetic cofactor machineries [Boll et al., 2014].

There are some exceptions for the anticipated distribution of class I and II BCRs in facultative and obligate anaerobes, e.g. the obligately anaerobic euryarchaeon Ferroglobus placidus uses a class I BCR for the degradation of numerous aromatics such as benzene, toluene or phenol coupled to dissimilatory Fe(III) reduction; the ATP dependence of the enzyme has recently been demonstrated in vitro [Schmid et al., 2015]. Other examples are dearmatizing aryl-CoA reductases from polycyclic aromatic compound-degrading anaerobes, e.g. the sulfatereducing Deltaproteobacterium NaphS2 or the enrichment culture N47. During growth of these obligate anaerobes with naphthalene, the 2-naphthoyl-CoA intermediate is first reduced to 5,6,7,8-tetrahydro-2-naphthoyl-CoA (THNCoA) by two flavin-dependent reductases belonging to the old yellow enzyme family [Eberlein et al., 2013a; Estelmann et al., 2015]. These enzymes can be regarded as a third class of dearmatizing aryl-CoA reductases [Boll et al., 2014]. The formed THNCoA-CoA is then reduced to a hexahydronaphthoyl-CoA product in an ATP-dependent manner [Eberlein et al., 2013b]. In agreement, the genomes of N47 and NaphS2 contain genes coding fur putative class I BCRs [Bergmann et al., 2011; DiDonato et al., 2010].

Conclusions and Future Perspectives

The W-containing ACH and class II BCR represent two W enzymes catalyzing unprecedented reactions within the Mo/W enzyme families. Both enzyme reactions may be of biotechnological interest: the formation of acetaldehyde from acetylene and cyclic dienes from aromatic rings are important processes to produce valuable building blocks in chemical syntheses. The structural insights into ACH and BCR catalysis provide the prerequisite to future biological or biomimetic synthetic approaches. But there are still a number of open basic questions that need to be addressed in future work.

While ACH, like other members of the DMSOR family, is apparently perfectly suited for redox catalysis, the hydration of C\textsubscript{2}H\textsubscript{2} to form acetaldehyde is definitely not a redox reaction. This remarkable finding suggests that an enzyme with a previous redox function was later recruited for the catalysis of the hydration reaction. For the recruitment of ACH as hydrolase, two extreme possibilities may be considered: (i) recruitment may have occurred late after anthropogenic acetylene made its appearance in the world, which would explain the limited distribution in today’s biosphere, and (ii) recruitment may have occurred very early when acetylene may have been more abundant. After the disappearance of the primordial source of acetylene, some unknown sources of low-level acetylene would have remained in the environment and microbial acetylene hydration would have been preserved through the ages, albeit with restriction to one or a few species in special niches [Wächtershäuser, pers. commun.]. So far, ACH has only been isolated and structurally characterized from the Deltaproteobacterium P. acet ylenicus. It exhibits a remarkable specificity for acetylene; other potential substrates, such as N\textsubscript{2}, CO and derivatives of acetylene, are not converted. This finding supports the idea that ACH is an ancient enzyme that evolved in an early phase of biochemical evolution when acetylene was more abundant in the Earth’s atmosphere [Culbertson et al., 1988]. At this point, a definitive reaction mechanism cannot be formulated in detail despite the availability of a high-resolution X-ray structure and several computational studies to model the reaction pathway.

In case of class II BCR, one of the most intriguing open questions is the nature of the sixth inorganic ligand at the W atom. As the outer shell electron transfer from the reduced W metal has to occur via this ligand to the aromatic ring, its unambiguous identification will be the key to understand the catalytic function of the enzyme. In particular EXAFS data favor a diatomic sixth ligand,
most probably cyanide. However, a W-cyanide bond would be unprecedented in nature, and its clear identification needs numerous future spectroscopic and structural analyses, most probably with enzymes from different organisms. In any case, the transfer of two single electrons from the Mo/W metal via a ligand to the substrate without binding of the latter to the metal is unique among MPT/WPT-containing enzymes. The huge number of bamB-like genes in genomes from Deltaproteobacteria and Firmicutes (<45% sequence identity) poses the question whether all of these code for class II BCR or for enzymes with different, so far unknown, functions.

Another open question is the mode of energetic coupling in class II BCRs. The obvious similarities of the BamCDEF modules to components of electron bifurcating hydrogenase/heterodisulfide complexes from hydroenotrophic methanogens suggest a similar mode of energetic coupling in these enzymes. However, experimental evidence for the predicted coupling of the endergonic benzoyl-CoA reduction to the exergonic NAD⁺ reduction with a reduced ferredoxin as medium-potential electron donor has not been shown yet. Most possibly, the demonstration of such or a similar process will rely on the availability of a pure, intact holo enzyme complex to exclude intervening short-cut electron transfer reactions in cell extracts.

Acknowledgements

This work was funded by the DFG (Deutsche Forschungsgemeinschaft) within the framework of the Scientific Priority Programme SPP1319 – ‘Biological transformation of hydrocarbons without oxygen: from the molecular to the global scale’.

References

uggested a similar mode of energetic coupling in these enzymes. However, experimental evidence for the predicted coupling of the endergonic benzoyl-CoA reduction to the exergonic NAD⁺ reduction with a reduced ferredoxin as medium-potential electron donor has not been shown yet. Most possibly, the demonstration of such or a similar process will rely on the availability of a pure, intact holo enzyme complex to exclude intervening short-cut electron transfer reactions in cell extracts.

Acknowledgements

This work was funded by the DFG (Deutsche Forschungsgemeinschaft) within the framework of the Scientific Priority Programme SPP1319 – ‘Biological transformation of hydrocarbons without oxygen: from the molecular to the global scale’.

References

Unusual Tungsten Enzymes

Boll/Einsle/Ermiller/Kroneck/Ullmann

